Download Free Parameter Estimation For Stable Distributions Book in PDF and EPUB Free Download. You can read online Parameter Estimation For Stable Distributions and write the review.

A Lévy process is a continuous-time analogue of a random walk, and as such, is at the cradle of modern theories of stochastic processes. Martingales, Markov processes, and diffusions are extensions and generalizations of these processes. In the past, representatives of the Lévy class were considered most useful for applications to either Brownian motion or the Poisson process. Nowadays the need for modeling jumps, bursts, extremes and other irregular behavior of phenomena in nature and society has led to a renaissance of the theory of general Lévy processes. Researchers and practitioners in fields as diverse as physics, meteorology, statistics, insurance, and finance have rediscovered the simplicity of Lévy processes and their enormous flexibility in modeling tails, dependence and path behavior. This volume, with an excellent introductory preface, describes the state-of-the-art of this rapidly evolving subject with special emphasis on the non-Brownian world. Leading experts present surveys of recent developments, or focus on some most promising applications. Despite its special character, every topic is aimed at the non- specialist, keen on learning about the new exciting face of a rather aged class of processes. An extensive bibliography at the end of each article makes this an invaluable comprehensive reference text. For the researcher and graduate student, every article contains open problems and points out directions for futurearch. The accessible nature of the work makes this an ideal introductory text for graduate seminars in applied probability, stochastic processes, physics, finance, and telecommunications, and a unique guide to the world of Lévy processes.
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.
Stable distributions are important family of parametric distributions widely used in signal processing as well as in mathematical finance. Estimation of the parameters of this model, is not quite straightforward due to the fact that there is no closed-form expression for their probability density function. Besides the computationally intensive maximum likelihood method where the density has to be evaluated numerically, there are some existing adhoc methods such as the quantile method, and a regression based method. These are introduced in Chapter 2. In this thesis, we introduce two new approaches: One, a spacing based estimation method introduced in Chapter 3 and two, an indirect inference method considered in Chapter 4. Simulation studies show that both these methods are very robust and efficient and do as well or better than the existing methods in most cases. Finally in Chapter 5, we use indirect inference approach to estimate the best fitting income distribution based on limited information that is often available.
Data analysis as an area of importance has grown exponentially, especially during the past couple of decades. This can be attributed to a rapidly growing computer industry and the wide applicability of computational techniques, in conjunction with new advances of analytic tools. This being the case, the need for literature that addresses this is self-evident. New publications are appearing, covering the need for information from all fields of science and engineering, thanks to the universal relevance of data analysis and statistics packages. This book is a collective work by a number of leading scientists, analysts, engineers, mathematicians and statisticians who have been working at the forefront of data analysis. The chapters included in this volume represent a cross-section of current concerns and research interests in these scientific areas. The material is divided into three parts: Financial Data Analysis and Methods, Statistics and Stochastic Data Analysis and Methods, and Demographic Methods and Data Analysis- providing the reader with both theoretical and applied information on data analysis methods, models and techniques and appropriate applications.
For the first time, this book offers a full and lucid introduction to a useful type of non-Gaussian models, namely those specified by alpha-stable distributions. Emphasizing the practical rather than the theoretical, it surveys the statistical properties, methods, and applications of symmetrical alpha-stable distributions.
This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.
The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.