Download Free Parallel Programming With Microsoft Visual Studio 2010 Step By Step Book in PDF and EPUB Free Download. You can read online Parallel Programming With Microsoft Visual Studio 2010 Step By Step and write the review.

Presents a guide to the parallel programming techniques of Microsoft Visual Studio, covering such topics as task paralellism, PLINQ, concurrent collections, customization, and debugging.
Your CPU meter shows a problem. One core is running at 100 percent, but all the other cores are idle. Your application is CPU-bound, but you are using only a fraction of the computing power of your multicore system. Is there a way to get better performance? The answer, in a nutshell, is parallel programming. Where you once would have written the kind of sequential code that is familiar to all programmers, you now find that this no longer meets your performance goals. To use your system’s CPU resources efficiently, you need to split your application into pieces that can run at the same time. Of course, this is easier said than done. Parallel programming has a reputation for being the domain of experts and a minefield of subtle, hard-to-reproduce software defects. Everyone seems to have a favorite story about a parallel program that did not behave as expected because of a mysterious bug. These stories should inspire a healthy respect for the difficulty of the problems you will face in writing your own parallel programs. Fortunately, help has arrived. The Parallel Patterns Library (PPL) and the Asynchronous Agents Library introduce a new programming model for parallelism that significantly simplifies the job. Behind the scenes are sophisticated algorithms that dynamically distribute computations on multicore architectures. In addition, Microsoft® Visual Studio® 2010 developmentsystem includes debugging and analysis tools to support the new parallel programming model. Proven design patterns are another source of help. This guide introduces you to the most important and frequently used patterns of parallel programming and provides executable code samples for them, using PPL. When thinking about where to begin, a good place to start is to review the patterns in this book. See if your problem has any attributes that match the six patterns presented in the following chapters. If it does, delve more deeply into the relevant pattern or patterns and study the sample code.
Expert guidance for those programming today’s dual-core processors PCs As PC processors explode from one or two to now eight processors, there is an urgent need for programmers to master concurrent programming. This book dives deep into the latest technologies available to programmers for creating professional parallel applications using C#, .NET 4, and Visual Studio 2010. The book covers task-based programming, coordination data structures, PLINQ, thread pools, asynchronous programming model, and more. It also teaches other parallel programming techniques, such as SIMD and vectorization. Teaches programmers professional-level, task-based, parallel programming with C#, .NET 4, and Visual Studio 2010 Covers concurrent collections, coordinated data structures, PLINQ, thread pools, asynchronous programming model, Visual Studio 2010 debugging, and parallel testing and tuning Explores vectorization, SIMD instructions, and additional parallel libraries Master the tools and technology you need to develop thread-safe concurrent applications for multi-core systems, with Professional Parallel Programming with C#.
Teach yourself Visual C# 2010-one step at a time. Ideal for developers with fundamental programming skills, this practical tutorial features learn-by-doing exercises that demonstrate how, when, and why to use the features of the C# rapid application development environment. You'll learn how to use Microsoft Visual Studio 2010 and Microsoft .NET Framework 4.0; develop a solid, fundamental understanding of C# language features; and then get to work creating actual components and working applications for the Windows operating system. You'll also delve into data management technologies and Web-based applications.
About The Book: The CPU meter shows the problem. One core is running at 100 percent, but all the other cores are idle. Your application is CPU-bound, but you are using only a fraction of the computing power of your multicore system. What next?The answer, in a nutshell, is parallel programming. Where you once would have written the kind of sequential code that is familiar to all programmers, you now find that this no longer meets your performance goals. To use your system s CPU resources efficiently, you need to split your application into pieces that can run at the same time. This is easier said than done. Parallel programming has a reputation for being the domain of experts and a minefield of subtle, hard-to-reproduce software defects.Everyone seems to have a favorite story about a parallel program that did not behave as expected because of a mysterious bug. These stories should inspire a healthy respect for the difficulty of the problems you face in writing your own parallel programs. Fortunately, help has arrived. Microsoft Visual Studio® 2010 introduces a new programming model for parallelism that significantly simplifies the job. Behind the scenes are supporting libraries with sophisticated algorithms that dynamically distribute computations on multicore architectures. Proven design patterns are another source of help. A Guide to Parallel Programming introduces you to the most important and frequently used patterns of parallel programming and gives executable code samples for them, using the Task Parallel Library (TPL) and Parallel LINQ (PLINQ).
Optimize code for multi-core processors with Intel's Parallel Studio Parallel programming is rapidly becoming a "must-know" skill for developers. Yet, where to start? This teach-yourself tutorial is an ideal starting point for developers who already know Windows C and C++ and are eager to add parallelism to their code. With a focus on applying tools, techniques, and language extensions to implement parallelism, this essential resource teaches you how to write programs for multicore and leverage the power of multicore in your programs. Sharing hands-on case studies and real-world examples, the authors examine the challenges of each project and show you how to overcome them. Explores conversion of serial code to parallel Focuses on implementing Intel Parallel Studio Highlights the benefits of using parallel code Addresses error and performance optimization of code Includes real-world scenarios that illustrate the techniques of advanced parallel programming situations Parallel Programming with Intel Parallel Studio dispels any concerns of difficulty and gets you started creating faster code with Intel Parallel Studio.
About The Book: Your CPU meter shows a problem. One core is running at 100 percent, but all the other cores are idle. Your application is CPU-bound, but you are using only a fraction of the computing power of your multicore system. Is there a way to get better performance? The answer, in a nutshell, is parallel programming. Where you once would have written the kind of sequential code that is familiar to all programmers, you now find that this no longer meets your performance goals. To use your system s CPU resources efficiently, you need to split your application into pieces that can run at the same time. Of course, this is easier said than done. Parallel programming has a reputation for being the domain of experts and a minefield of subtle, hard-to-reproduce software defects. Everyone seems to have a favorite story about a parallel program that did not behave as expected because of a mysterious bug. These stories should inspire a healthy respect for the difficulty of the problems you will face in writing your own parallel programs. Fortunately, help has arrived. The Parallel Patterns Library (PPL) and the Asynchronous Agents Library introduce a new programming model for parallelism that significantly simplifies the job. Behind the scenes are sophisticated algorithms that dynamically distribute computations on multicore architectures. In addition, Microsoft® Visual Studio® 2010 development system includes debugging and analysis tools to support the new parallel programming model.
The CPU meter shows the problem. One core is running at 100 percent, but all the other cores are idle. Your application is CPU-bound, but you are using only a fraction of the computing power of your multicore system. What next? The answer, in a nutshell, is parallel programming. Where you once would have written the kind of sequential code that is familiar to all programmers, you now find that this no longer meets your performance goals. To use your system's CPU resources efficiently, you need to split your application into pieces that can run at the same time. This is easier said than done. Parallel programming has a reputation for being the domain of experts and a minefield of subtle, hard-to-reproduce software defects. Everyone seems to have a favorite story about a parallel program that did not behave as expected because of a mysterious bug. These stories should inspire a healthy respect for the difficulty of the problems you face in writing your own parallel programs. Fortunately, help has arrived. Microsoft Visual Studio(R) 2010 introduces a new programming model for parallelism that significantly simplifies the job. Behind the scenes are supporting libraries with sophisticated algorithms that dynamically distribute computations on multicore architectures. Proven design patterns are another source of help. A Guide to Parallel Programming introduces you to the most important and frequently used patterns of parallel programming and gives executable code samples for them, using the Task Parallel Library (TPL) and Parallel LINQ (PLINQ).
Show C# and VB.NET programmers how to effectively take advantage of the multicore capabilities of modern PCs using the Microsoft platform. The CPU meter shows the problem. One core is running at 100 percent, but all the other cores are idle. Your application is CPU-bound, but you are using only a fraction of the computing power of your multicore system. What next? The answer, in a nutshell, is parallel programming. Where you once would have written the kind of sequential code that is familiar to all programmers, you now find that this no longer meets your performance goals. To use your system's CPU resources efficiently, you need to split your application into pieces that can run at the same time. This is easier said than done. Parallel programming has a reputation for being the domain of experts and a minefield of subtle, hard-to-reproduce software defects. Everyone seems to have a favorite story about a parallel program that did not behave as expected because of a mysterious bug. These stories should inspire a healthy respect for the difficulty of the problems you face in writing your own parallel programs. Fortunately, help has arrived. Microsoft Visual Studio(R) 2010 introduces a new programming model for parallelism that significantly simplifies the job. Behind the scenes are supporting libraries with sophisticated algorithms that dynamically distribute computations on multicore architectures. Proven design patterns are another source of help. A Guide to Parallel Programming introduces you to the most important and frequently used patterns of parallel programming and gives executable code samples for them, using the Task Parallel Library (TPL) and Parallel LINQ (PLINQ).