Download Free Parallel Computing Works Book in PDF and EPUB Free Download. You can read online Parallel Computing Works and write the review.

A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
The ability of parallel computing to process large data sets and handle time-consuming operations has resulted in unprecedented advances in biological and scientific computing, modeling, and simulations. Exploring these recent developments, the Handbook of Parallel Computing: Models, Algorithms, and Applications provides comprehensive coverage on a
A complete source of information on almost all aspects of parallel computing from introduction, to architectures, to programming paradigms, to algorithms, to programming standards. It covers traditional Computer Science algorithms, scientific computing algorithms and data intensive algorithms.
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
This book outlines a set of issues that are critical to all of parallel architecture--communication latency, communication bandwidth, and coordination of cooperative work (across modern designs). It describes the set of techniques available in hardware and in software to address each issues and explore how the various techniques interact.
Today all computers, from tablet/desktop computers to super computers, work in parallel. A basic knowledge of the architecture of parallel computers and how to program them, is thus, essential for students of computer science and IT professionals. In its second edition, the book retains the lucidity of the first edition and has added new material to reflect the advances in parallel computers. It is designed as text for the final year undergraduate students of computer science and engineering and information technology. It describes the principles of designing parallel computers and how to program them. This second edition, while retaining the general structure of the earlier book, has added two new chapters, ‘Core Level Parallel Processing’ and ‘Grid and Cloud Computing’ based on the emergence of parallel computers on a single silicon chip popularly known as multicore processors and the rapid developments in Cloud Computing. All chapters have been revised and some chapters are re-written to reflect the emergence of multicore processors and the use of MapReduce in processing vast amounts of data. The new edition begins with an introduction to how to solve problems in parallel and describes how parallelism is used in improving the performance of computers. The topics discussed include instruction level parallel processing, architecture of parallel computers, multicore processors, grid and cloud computing, parallel algorithms, parallel programming, compiler transformations, operating systems for parallel computers, and performance evaluation of parallel computers.
Recent developments in parallel computing mean that the use of machine learning techniques and intelligence to handle the huge volume of available data have brought the faster solutions offered by advanced technologies to various fields of application. This book presents the proceedings of the Virtual International Conference on Advances in Parallel Computing Technologies and Applications (ICAPTA 2021), hosted in Justice Basheer Ahmed Sayeed College for women (formerly "S.I.E.T Women's College"), Chennai, India, and held online as a virtual event on 15 and 16 April 2021. The aim of the conference was to provide a forum for sharing knowledge in various aspects of parallel computing in communications systems and networking, including cloud and virtualization solutions, management technologies, and vertical application areas. It also provided a platform for scientists, researchers, practitioners and academicians to present and discuss the most recent innovations and trends, as well as the concerns and practical challenges encountered in this field. Included here are 52 full length papers, selected from over 100 submissions based on the reviews and comments of subject experts. Topics covered include parallel computing in communication, machine learning intelligence for parallel computing and parallel computing for software services in theoretical and practical aspects. Providing an overview of the latest developments in the field, the book will be of interest to all those whose work involves the use of parallel computing technologies.
Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing