Download Free Parallel And Distributed Simulation Book in PDF and EPUB Free Download. You can read online Parallel And Distributed Simulation and write the review.

From the preface, page xv: [...] My goal in writing Parallel and Distributed Simulation Systems, is to give an in-depth treatment of technical issues concerning the execution of discrete event simulation programs on computing platforms composed of many processores interconnected through a network"
Simulation is a multi-disciplinary field, and significant simulation research is dispersed across multiple fields of study. Distributed computer systems, software design methods, and new simulation techniques offer synergistic multipliers when joined together in a distributed simulation. Systems of most interest to the simulation practitioner are often the most difficult to model and implement. Distributed Simulation brings together the many complex technologies for distributed simulation. There is strong emphasis on emerging simulation methodologies, including object-oriented, multilevel, and multi-resolution simulation. Finally, one concise text provides a strong foundation for the development of high fidelity simulations in heterogeneous distributed computing environments!
The PaCT-2009 (Parallel Computing Technologies) conference was a four-day eventheld in Novosibirsk. This was the tenth internationalconference to be held in the PaCT series. The conferences are held in Russia every odd year. The ?rst conference, PaCT 1991, was held in Novosibirsk (Academgorodok), September 7–11, 1991. The next PaCT conferences were held in Obninsk (near Moscow), August 30 to September 4, 1993; in St. Petersburg, September 12–15, 1995; in Yaroslavl, September 9–12, 1997; in Pushkin (near St. Petersburg), September 6–10, 1999; in Academgorodok (Novosibirsk), September 3–7, 2001; in Nizhni Novgorod, September 15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in Pereslavl-Zalessky, September 3–7, 2007. Since 1995 all the PaCT Proceedings have been published by Springer in the LNCS series. PaCT-2009 was jointly organized by the Institute of Computational Mathematics and Mathematical Geophysics of the Russian Academy of Sciences (RAS) and the State University of Novosibirsk. The purpose of the conference was to bring together scientists working on theory, architecture, software, hardware and the solution of lar- scale problems in order to provide integrated discussions on parallel computing technologies. The conference attracted about 100 participants from around the world. Authors from 17 countries submitted 72 papers. Of those submitted, 34 were selected for the conference as regular papers; there were also 2 invited - pers. In addition there were a number of posters presented. All the papers were internationallyreviewedby at leastthree referees. A demo sessionwasorganized for the participants.
Dieses Buch ist eine unschätzbare Informationsquelle für alle Ingenieure, Designer, Manager und Techniker bei Entwicklung, Studium und Anwendung einer großen Vielzahl von Simulationstechniken. Es vereint die Arbeit internationaler Simulationsexperten aus Industrie und Forschung. Alle Aspekte der Simulation werden in diesem umfangreichen Nachschlagewerk abgedeckt. Der Leser wird vertraut gemacht mit den verschiedenen Techniken von Industriesimulationen sowie mit Einsatz, Anwendungen und Entwicklungen. Neueste Fortschritte wie z.B. objektorientierte Programmierung werden ebenso behandelt wie Richtlinien für den erfolgreichen Umgang mit simulationsgestützten Prozessen. Auch gibt es eine Liste mit den wichtigsten Vertriebs- und Zulieferadressen. (10/98)
Explore the military and combat applications of modeling and simulation Engineering Principles of Combat Modeling and Distributed Simulation is the first book of its kind to address the three perspectives that simulation engineers must master for successful military and defense related modeling: the operational view (what needs to be modeled); the conceptual view (how to do combat modeling); and the technical view (how to conduct distributed simulation). Through methods from the fields of operations research, computer science, and engineering, readers are guided through the history, current training practices, and modern methodology related to combat modeling and distributed simulation systems. Comprised of contributions from leading international researchers and practitioners, this book provides a comprehensive overview of the engineering principles and state-of-the-art methods needed to address the many facets of combat modeling and distributed simulation and features the following four sections: Foundations introduces relevant topics and recommended practices, providing the needed basis for understanding the challenges associated with combat modeling and distributed simulation. Combat Modeling focuses on the challenges in human, social, cultural, and behavioral modeling such as the core processes of "move, shoot, look, and communicate" within a synthetic environment and also equips readers with the knowledge to fully understand the related concepts and limitations. Distributed Simulation introduces the main challenges of advanced distributed simulation, outlines the basics of validation and verification, and exhibits how these systems can support the operational environment of the warfighter. Advanced Topics highlights new and developing special topic areas, including mathematical applications fo combat modeling; combat modeling with high-level architecture and base object models; and virtual and interactive digital worlds. Featuring practical examples and applications relevant to industrial and government audiences, Engineering Principles of Combat Modeling and Distributed Simulation is an excellent resource for researchers and practitioners in the fields of operations research, military modeling, simulation, and computer science. Extensively classroom tested, the book is also ideal for courses on modeling and simulation; systems engineering; and combat modeling at the graduate level.
This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.
This unique text/reference provides a comprehensive review of distributed simulation (DS) from the perspective of Model Driven Engineering (MDE), illustrating how MDE affects the overall lifecycle of the simulation development process. Numerous practical case studies are included to demonstrate the utility and applicability of the methodology, many of which are developed from tools available to download from the public domain. Topics and features: Provides a thorough introduction to the fundamental concepts, principles and processes of modeling and simulation, MDE and high-level architecture Describes a road map for building a DS system in accordance with the MDE perspective, and a technical framework for the development of conceptual models Presents a focus on federate (simulation environment) architectures, detailing a practical approach to the design of federations (i.e., simulation member design) Discusses the main activities related to scenario management in DS, and explores the process of MDE-based implementation, integration and testing Reviews approaches to simulation evolution and modernization, including architecture-driven modernization for simulation modernization Examines the potential synergies between the agent, DS, and MDE methodologies, suggesting avenues for future research at the intersection of these three fields Distributed Simulation – A Model Driven Engineering Approach is an important resource for all researchers and practitioners involved in modeling and simulation, and software engineering, who may be interested in adopting MDE principles when developing complex DS systems.
This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.
Large-Scale Simulation: Models, Algorithms, and Applications gives you firsthand insight on the latest advances in large-scale simulation techniques. Most of the research results are drawn from the authors’ papers in top-tier, peer-reviewed, scientific conference proceedings and journals. The first part of the book presents the fundamentals of large-scale simulation, including high-level architecture and runtime infrastructure. The second part covers middleware and software architecture for large-scale simulations, such as decoupled federate architecture, fault tolerant mechanisms, grid-enabled simulation, and federation communities. In the third part, the authors explore mechanisms—such as simulation cloning methods and algorithms—that support quick evaluation of alternative scenarios. The final part describes how distributed computing technologies and many-core architecture are used to study social phenomena. Reflecting the latest research in the field, this book guides you in using and further researching advanced models and algorithms for large-scale distributed simulation. These simulation tools will help you gain insight into large-scale systems across many disciplines.
This volume constitutes the refereed proceedings of the 13th International Conference on Parallel Computing. The papers are organized into topical sections covering support tools and environments, performance prediction and evaluation, scheduling and load balancing, compilers for high performance, parallel and distributed databases, grid and cluster computing, peer-to-peer computing, distributed systems and algorithms, and more.