Download Free Parallel And Distributed Computation Numerical Methods Book in PDF and EPUB Free Download. You can read online Parallel And Distributed Computation Numerical Methods and write the review.

This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.
Parallel and distributed computation has been gaining a great lot of attention in the last decades. During this period, the advances attained in computing and communication technologies, and the reduction in the costs of those technolo gies, played a central role in the rapid growth of the interest in the use of parallel and distributed computation in a number of areas of engineering and sciences. Many actual applications have been successfully implemented in various plat forms varying from pure shared-memory to totally distributed models, passing through hybrid approaches such as distributed-shared memory architectures. Parallel and distributed computation differs from dassical sequential compu tation in some of the following major aspects: the number of processing units, independent local dock for each unit, the number of memory units, and the programming model. For representing this diversity, and depending on what level we are looking at the problem, researchers have proposed some models to abstract the main characteristics or parameters (physical components or logical mechanisms) of parallel computers. The problem of establishing a suitable model is to find a reasonable trade-off among simplicity, power of expression and universality. Then, be able to study and analyze more precisely the behavior of parallel applications.
The use of parallel programming and architectures is essential for simulating and solving problems in modern computational practice. There has been rapid progress in microprocessor architecture, interconnection technology and software devel- ment, which are in?uencing directly the rapid growth of parallel and distributed computing. However, in order to make these bene?ts usable in practice, this dev- opment must be accompanied by progress in the design, analysis and application aspects of parallel algorithms. In particular, new approaches from parallel num- ics are important for solving complex computational problems on parallel and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today’s parallel computing. These range from parallel algorithmics, progr- ming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerical integ- tion, number theory and their applications in computer simulations, which together form the kernel of the monograph. We expect that the book will be of interest to scientists working on parallel computing, doctoral students, teachers, engineers and mathematicians dealing with numerical applications and computer simulations of natural phenomena.
A visual, interdisciplinary approach to solving problems in numerical methods Computing for Numerical Methods Using Visual C++ fills the need for a complete, authoritative book on the visual solutions to problems in numerical methods using C++. In an age of boundless research, there is a need for a programming language that can successfully bridge the communication gap between a problem and its computing elements through the use of visual-ization for engineers and members of varying disciplines, such as biologists, medical doctors, mathematicians, economists, and politicians. This book takes an interdisciplinary approach to the subject and demonstrates how solving problems in numerical methods using C++ is dominant and practical for implementation due to its flexible language format, object-oriented methodology, and support for high numerical precisions. In an accessible, easy-to-follow style, the authors cover: Numerical modeling using C++ Fundamental mathematical tools MFC interfaces Curve visualization Systems of linear equations Nonlinear equations Interpolation and approximation Differentiation and integration Eigenvalues and Eigenvectors Ordinary differential equations Partial differential equations This reader-friendly book includes a companion Web site, giving readers free access to all of the codes discussed in the book as well as an equation parser called "MyParser" that can be used to develop various numerical applications on Windows. Computing for Numerical Methods Using Visual C++ serves as an excellent reference for students in upper undergraduate- and graduate-level courses in engineering, science, and mathematics. It is also an ideal resource for practitioners using Microsoft Visual C++.
Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
This book provides an in-depth study concerning a claqss of problems in the general area of load sharing and balancing in parallel and distributed systems. The authors present the design and analysis of load distribution strategies for arbitrarily divisible loads in multiprocessor/multicomputer systems subjects to the system constraints in the form of communication delays. In particular, two system architecture-single-level tree or star network, and linear network-are thoroughly analyzed. The text studies two different cases, one of processors with front-ends and the other without. It concentrates on load distribution strategies and performance analysis, and does not cover issues related to implementation of these strategies on a specific system. The book collates research results developed mainly by two groups at the Indian Institute of Science and the State University of New York at Stony Brook. It also covers results by other researchers that have either appeared or are due to appear in computer science literature. The book also provides relevant but easily understandable numerical examples and figures to illustrate important concepts. It is the first book in this area and is intended to spur further research enabling these ideas to be applied to a more general class of loads. The new methodology introduced here allows a close examination of issues involving the integration of communication and computation. In fact, what is presented is a new "calculus" for load sharing problems.
Mathematics of Computing -- Parallelism.
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.