Download Free Paradigms Of Complexity Fractals And Structures In The Sciences Book in PDF and EPUB Free Download. You can read online Paradigms Of Complexity Fractals And Structures In The Sciences and write the review.

Every reader will find something of interest in this book — from superdiffusion of the ocean surface to fetal heartbeats, from solar wind to the wearing-out of tools, from radioactive contamination to texture analysis, from image rendering to neural developments. The all-pervading link connecting these disparate disciplines is the realization that a linear approach to the majority of natural processes is at best only an approximation that can frequently be downright misleading. Consequently, the rise of what is broadly called the theory of complexity has gained tremendous momentum in the last decade or two. This modern approach aims at, and frequently succeeds in, correctly explaining many natural processes.The papers in this volume are based on presentations of the sixth international conference exploring the above-mentioned issues. These conferences are now regular and well established among the nonlinear series of conferences. This conference series is organized in different geographical regions, to encourage international collaboration. Among the distinguishing features of the series is its multidisciplinary nature, which has been growing steadily.
Fractal analysis has rapidly become an important field in materials science and engineering with broad applications to theoretical analysis and quantitative description of microstructures of materials. Fractal methods have thus far shown great potential in engineering applications in quantitative microscopic analysis of materials using commercial microscopes. This book attempts to introduce the fundamentals and the basis methods of fractal description of microstructures in combination with digital imaging and computer technologies. Basic concepts are given in the form of mathematical expressions. Detailed algorithms in practical applications are also provided. Fractal measurement, error analysis and fractal description of cluster growth, thin films and surfaces are emphasized in this book. Image-Based Fractal Description of Microstructures provides a comprehensive approach to materials characterization by fractal from theory to application.
The dynamics of complex systems can clarify the creation of structures in Nature. This creation is driven by the collective interaction of constitutive elements of the system. Such interactions are frequently nonlinear and are directly responsible for the lack of prediction in the evolution process. The self-organization accompanying these processes occurs all around us and is constantly being rediscovered, under the guise of a new jargon, in apparently unrelated disciplines. This volume offers unique perspectives on aspects of fractals and complexity and, through the examination of complementary techniques, provides a unifying thread in this multidisciplinary endeavor. Do nonlinear interactions play a role in the complexity management of socio-econo-political systems? Is it possible to extract the global properties of genetic regulatory networks without knowing the details of individual genes? What can one learn by transplanting the self-organization effects known in laser processes to the study of emotions? What can the change in the level of complexity tell us about the physiological state of the organism? The reader will enjoy finding the answers to these questions and many more in this book. Contents: Structure of Genetic Regulatory Networks: Evidence for Scale Free Networks (L S Liebovitch); Modelling Fractal Dynamics (B West); Complexity in Nature and Society: Complexity Management in the Age of Globalization (K Mainzer); Analysis of Geographical Distribution Patterns in Plants Using Fractals (A Bari); A Cornucopia of Connections: Finding Four Familiar Fractals in the Tower of Hanoi (D R Camp); Fractal Sets Generated by Two-Dimensional Non-Invertible Maps (Ch Mira); Fractals, Morphological Spectrum and Complexity of Interfacial Patterns in Non-equilibrium Solidification (P K Galenko); Modelling Pattern Formation Upon Laser-Induced Etching (M Haase); Synergetics as an Approach to Complexity in the Humanities (H Haken); Fractal Analysis of the Images Using Wavelet Transformation (P Jerabkova); Monitoring the Depth of Anaesthesia Using Fractal Complexity Method (W Klonowski); Description of Complex Systems in Terms of Self-Organization Processes of Prime Integer Relations (V Korotkikh); Genome as a Fractal 2D Walk (A Loskutov); Generalization of the DLA-Process with Different Inmiscible Components by Time-Scale Roughening (A Loskutov); Fractional Relaxation of Distributed Order (F Mainardi); Hierarchy of Cellular Automata in Relation to Control of Chaos or Anticontrol (M Markus); A Generative Construction and Visualization of 3D Fractal Measures (T Martyn); Markov Memory in Multifractal Natural Processes (F Pallikari); Fractals, Complexity and Chaos in Supply Chain Networks (M A Pearson); Complexity, Fractals, Nature and Industrial Design: Some Connections (N Sala); Simulation of Geochemical Banding in Acidization-Precipitation Experiments In Situ (R F Sultan); Clustering Phenomena in the Time Distribution of Lightning (L Telesca); Dynamical Decomposition of Multifractal Time Series as Fractal Evolution and Long-Term Cycles: Applications to Foreign Currency Exchange Market (A Turiel); The Complex Couplings and Gompertzian Dynamics (P W Waliszewski); The Competition Rule of the High Income Model and the Power-Law Exponents (K Y Yamamoto); The Distance Radio Fractal Image (X-Z Zhang). Key Features Contributions from famous nonlinear scientists such as H Haken, K Mainzer, Ch Mira, L Liebovitch and B West A unique blend of multidisciplinary topics A snapshot of current activities in the fields of fractals and complexity Readership: Academics in multidisciplinary research, primarily physics, mathematics, engineering, and life sciences.
One of the ways to understand the complexity in scientific disciplines is through the use of fractal geometry. Tremendous progress has been made in this field since its inception some two decades ago. This book collects the papers at the cutting-edge, reflecting the current status of fractals. With its special emphasis on the multidisciplinary research, the book represents a unique contribution to the understanding of the complex phenomena in nature.
This volume is number four in a series of proceedings volumes from the International Symposia on Fractals in Biology and Medicine in Ascona, Switzerland which have been inspired by the work of Benoît Mandelbrot seeking to extend the concepts towards the life sciences. It highlights the potential that fractal geometry offers for elucidating and explaining the complex make-up of cells, tissues and biological organisms either in normal or in pathological conditions.
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems. - Constructs and presents a multifarious approach for critical decision-making processes embodying paradoxes and uncertainty. - Includes a combination of theory and applications with regard to multi-chaos, fractal and multi-fractional as well as AI of different complex systems and many-body systems. - Provides readers with a bridge between application of advanced computational mathematical methods and AI based on comprehensive analyses and broad theories.
Fractal dynamics provide an unparalleled tool for understanding the evolution of natural complexity throughout physical, biological, and psychological realms. This book’s conceptual framework helps to reconcile several persistent dichotomies in the natural sciences, including mind-brain, linear-nonlinear, subjective-objective, and even personal-transpersonal processes. A fractal approach is especially useful when applied to recursive processes of consciousness, both within their ordinary and anomalous manifestations. This novel way to study the interconnection of seemingly divided wholes encompasses multiple dimensions of experience and being. It brings together experts in diverse fields—neuropsychologists, psychiatrists, physicists, physiologists, psychoanalysts, mathematicians, and professors of religion and music composition—to demonstrate the value of fractals as model, method, and metaphor within psychology and related social and physical sciences. The result is a new perspective for understanding what has often been dismissed as too subjective, idiosyncratic, and ineffably beyond the scope of science, bringing these areas back into a natural-scientific framework.