Download Free Pan Genome Level Genotype And Phenotype Prediction Advances In Precision Agriculture Book in PDF and EPUB Free Download. You can read online Pan Genome Level Genotype And Phenotype Prediction Advances In Precision Agriculture and write the review.

This volume aims to provide a timely view of the state-of-the-art in systems biology. The editors take the opportunity to define systems biology as they and the contributing authors see it, and this will lay the groundwork for future studies. The volume is well-suited to both students and researchers interested in the methods of systems biology. Although the focus is on plant systems biology, the proposed material could be suitably applied to any organism.
Pan-genomics: Applications, Challenges, and Future Prospects covers current approaches, challenges and future prospects of pan-genomics. The book discusses bioinformatics tools and their applications and focuses on bacterial comparative genomics in order to leverage the development of precise drugs and treatments for specific organisms. The book is divided into three sections: the first, an "overview of pan-genomics and common approaches, brings the main concepts and current approaches on pan-genomics research; the second, "case studies in pan-genomics, thoroughly discusses twelve case, and the last, "current approaches and future prospects in pan-multiomics, encompasses the developments on omics studies to be applied on bacteria related studies. This book is a valuable source for bioinformaticians, genomics researchers and several members of biomedical field interested in understanding further bacterial organisms and their relationship to human health. - Covers the entire spectrum of pangenomics, highlighting the use of specific approaches, case studies and future perspectives - Discusses current bioinformatics tools and strategies for exploiting pangenomics data - Presents twelve case studies with different organisms in order to provide the audience with real examples of pangenomics applicability
This Research Topic is part of the article collection series - Multi-omics and Computational Biology in Horticultural Plants: From Genotype to Phenotype. Horticultural plants play an important role for humans by providing herbal medicines, beverages, vegetables, fruits, and ornamentals. High-throughput technologies have revolutionised the time scale and power of detecting insights into physiological changes and biological mechanisms in plants. All sequencing data and tools have helped us better understand the evolutionary histories of horticultural plants and provide genotype and phenotype resources for molecular studies on economically important traits. The integration of these -omics technologies (e.g., genomics, transcriptomics, proteomics, metabolomics, lipidomics, ionomics, and redoxomics) is currently at the forefront of plant research. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and polyploidy. Novel computational methods need to be developed to take advantage of state-of-the-art genomic technologies. As a result, the mining of multi-omics data and the development of new computational biology approaches for the reliable and efficient analysis of plant traits is necessary.
This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
This book aims to help plant breeders by reviewing past achievements, currently successful practices, and emerging methods and techniques. Theoretical considerations are also presented to strike the right balance between being as simple as possible but as complex as necessary. The United Nations predicts that the global human population will continue rising to 9.0 billion by 2050. World food production will need to increase between 70-100 per cent in just 40 years. First generation bio-fuels are also using crops and cropland to produce energy rather than food. In addition, land area used for agriculture may remain static or even decrease as a result of degradation and climate change, despite more land being theoretically available, unless crops can be bred which tolerate associated abiotic stresses. Lastly, it is unlikely that steps can be taken to mitigate all of the climate change predicted to occur by 2050, and beyond, and hence adaptation of farming systems and crop production will be required to reduce predicted negative effects on yields that will occur without crop adaptation. Substantial progress will therefore be required in bridging the yield gap between what is currently achieved per unit of land and what should be possible in future, with the best farming methods and best storage and transportation of food, given the availability of suitably adapted cultivars, including adaptation to climate change. My book is divided into four parts: Part I is an historical introduction; Part II deals with the origin of genetic variation by mutation and recombination of DNA; Part III explains how the mating system of a crop species determines the genetic structure of its landraces; Part IV considers the three complementary options for future progress: use of sexual reproduction in further conventional breeding, base broadening and introgression; mutation breeding; and genetically modified crops.
Our global agricultural and food system is broken and needs to transition to one that is more sustainable and beneficial to the worlds population. This seems hard in the face of the linked challenges of climate change, natural resource depletion, and worldwide economic and social upheaval. At the same time, farmer-led social movements are growing, and there is increasing recognition that agroecology and food sovereignty are key solutions for both nutritious food security and climate change adaptation. This book takes you along in the transition to agroecology, which is already happening, worldwide! The author shows us the as of yet dispersed but growing movement of many smallholder farmers, projects, programs, research, and policy agendas that are making the change. Since the daily news prevents us from noticing, Jelleke shows us the most beautiful and intriguing examples of ground-breaking people and projects. She gives you the keys for transition. She makes us look back from 2030. What have we done by thenyou and I, your friends and colleagues, investors and politiciansto have arrived in a changed food-secure world where agroecology is the new normal? This book is a must-read for researchers, politicians, students, and consumers alike.
This book presents the latest advances in rice genomics, genetics and breeding, with a special focus on their importance for rice biology and how they are breathing new life into traditional genetics. Rice is the main staple food for more than half of the world’s population. Accordingly, sustainable rice production is a crucial issue, particularly in Asia and Africa, where the population continues to grow at an alarming rate. The book’s respective chapters offer new and timely perspectives on the synergistic effects of genomics and genetics in novel rice breeding approaches, which can help address the urgent issue of providing enough food for a global population that is expected to reach 9 billion by 2050.