Download Free Oxygen Chemistry Book in PDF and EPUB Free Download. You can read online Oxygen Chemistry and write the review.

Taking an interdisciplinary approach, this book and its counterpart, Active Oxygen in Biochemistry, explore the active research area of the chemistry and biochemistry of oxygen. Complementary but independent, the two volumes integrate subject areas including medicine, biology, chemistry, engineering, and environmental studies.
This book places oxygen on the center stage of chemistry in a manner that parallels the focus on carbon by 19th century chemists. One measure of the significance of oxygen chemistry is the greater diversity of oxygen-containing molecules than of carbon-containing molecules. One of the most important compounds is water, containing the properties of being a unique medium for biological chemistry and life, the source of all the dioxygen in the atmosphere, and the moderator of the earth's climate. Sawyer first introduces the biological origins of dioxygen and role of dioxygen in aerobic biology and oxidative metabolism, and in separate chapters discusses the oxidation-reduction thermodynamics of oxygen species, and the nature of the bonding for oxygen in its compounds. Additional chapters focus on the reactivities of specific oxygen compounds. The book will be of interest to chemists and biochemists, as well as graduate students, life scientists, and medical researchers.
Covers the vastly expanding subject of oxidative processes mediated by copper ions within biological systems Copper-mediated biological oxidations offer a broad range of fundamentally important and potentially practical chemical processes that cross many chemical and pharmaceutical disciplines. This newest volume in the Wiley Series on Reactive Intermediates in Chemistry and Biology is divided into three logical areas within the topic of copper/oxygen chemistry— biological systems, theory, and bioinorganic models and applications—to explore the biosphere for its highly evolved and thus efficient oxidative transformations in the discovery of new types of interactions between molecular oxygen and copper ion. Featuring a diverse collection of subject matter unified in one complete and comprehensive resource, Copper-Oxygen Chemistry probes the fundamental aspects of copper coordination chemistry, synthetic organic chemistry, and biological chemistry to reveal both the biological and chemical aspects driving the current exciting research efforts behind copper-oxygen chemistry. In addition, Copper-Oxygen Chemistry: Addresses the significantly increasing literature on oxygen-atom insertion and carbon-carbon bond-forming reactions as well as enantioselective oxidation chemistries Progresses from biological systems to spectroscopy and theory, and onward to bioinorganic models and applications Covers a wide array of reaction types such as insertion and dehydrogenation reactions that utilize the cheap, abundant, and energy-containing O2 molecule With thorough coverage by prominent authors and researchers shaping innovations in this growing field, this valuable reference is essential reading for bioinorganic chemists, as well as organic, synthetic, and pharmaceutical chemists in academia and industry.
The selected papers in this invaluable volume are arranged in chapters, each with an introductory essay. The purpose of the arrangement is to illustrate the process of scientific discovery at work. Neil Bartlett's field is that of powerful oxidizers. The early chapters tell the story of the oxidation of the oxygen molecule and the discovery of xenon chemistry. His work in noble-gas chemistry is summarized. Succeeding chapters show how metastable fluorides such as Ag3 and NiF4 came to be prepared at ordinary temperatures and pressures, and how they have provided the most potent oxidizers and fluorinators ever prepared.
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
Human blood performs many important functions including defence against disease and transport of biomolecules, but perhaps the most important is to carry oxygen – the fundamental biochemical fuel - and other blood gases around the cardiovascular system. Traditional therapies for the impairment of this function, or the rapid replacement of lost blood, have centred around blood transfusions. However scientists are developing chemicals (oxygen therapeutics, or “blood substitutes”) which have the same oxygen-carrying capability as blood and can be used as replacements for blood transfusion or to treat diseases where oxygen transport is impaired. Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood links the underlying biochemical principles of the field with chemical and biotechnological innovations and pre-clinical development. The first part of the book deals with the chemistry, biochemistry, physiology and toxicity of oxygen, including chapters on hemoglobin reactivity and regulation; the major cellular and physiological control mechanisms of blood flow and oxygen delivery; hemoglobin and myoglobin; nitric oxide and oxygen; and the role of reactive oxygen and nitrogen species in ischemia/reperfusion Injury. The book then discusses medical needs for oxygen supply, including acute traumatic hemorrhage and anemia; diagnosis and treatment of haemorrhages in "non-surgical" patients; management of perioperative bleeding; oxygenation in the preterm neonate; ischemia normobaric and hyperbaric oxygen therapy for ischemic stroke and other neurological conditions; and transfusion therapy in β thalassemia and sickle cell disease Finally “old”and new strategies for oxygen supply are described. These include the political, administrative and logistic issues surrounding transfusion; conscientious objection in patient blood management; causes and consequences of red cell incompatibility; biochemistry of red blood cell storage; proteomic investigations on stored red blood cells; red blood cells from stem cells; the universal red blood cell; allosteric effectors of hemoglobin; hemoglobin-based oxygen carriers; oxygen delivery by natural and artificial oxygen carriers; cross-linked and polymerized hemoglobins as potential blood substitutes; design of novel pegylated hemoglobins as oxygen carrying plasma expanders; hb octamers by introduction of surface cysteines; hemoglobin-vesicles as a cellular type hemoglobin-based oxygen carrier; animal models and oxidative biomarkers to evaluate pre-clinical safety of extracellular hemoglobins; and academia – industry collaboration in blood substitute development. Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood is an essential reference for clinicians, haematologists, medicinal chemists, biochemists, molecular biologists, biotechnologists and blood substitute researchers.
This Very Short Introduction is an exciting and non-traditional approach to understanding the terminology, properties, and classification of chemical elements. It traces the history and cultural impact of the elements on humankind from ancient times through today. Packed with anecdotes, The Elements is a highly engaging and entertaining exploration of the fundamental question: what is the world made from?
Oxygen offers fresh perspectives on our own lives and deaths, explaining modern killer diseases, why we age, and what we can do about it. Advancing revelatory new ideas, following chains of evidence, the book ranges through many disciplines, from environmental sciences to molecular medicine. Damage to DNA caused by oxidative stress appears to explain aging and many of its diseases, hence the popularity in alternative health circles of antioxidants. But antioxidants alone fail to prevent aging. Lane suggests two different avenues of study: modulation of the immune system, which generates free radicals as part of its defense against infectious diseases; and ways of improving the health of our cellular mitochondria, on which many age-related ailments seem to depend. Provocative and complexly argued. Copyright ©Kirkus Reviews, used with permission.
Chemists from Europe, North America, Japan, and India not only describe the chemistry of the three reactive intermediates relevant to their use in synthesizing complex organic compounds, they also provide detailed protocols of methods for generating and using them in reactions. About a third of the book is devoted to nitrogen, oxygen, and sulfur ylides. The rest ammonium, oxonium, and sulfonium; azomethine, carbonyl, and thiocarbonyl; and nitrile flavors. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com).