Download Free Oxidation Catalysis Book in PDF and EPUB Free Download. You can read online Oxidation Catalysis and write the review.

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
Filling a gap in the current literature, this comprehensive reference presents all important catalyst classes, including metal oxides, polyoxometalates, and zeolites. Readers will find here everything they need to know -- from structure design to characterization, and from immobilization to industrial processes. A true must-have for anyone working in this key technology.
This book offers a comprehensive overview of the most recent developments in both total oxidation and combustion and also in selective oxidation. For each topic, fundamental aspects are paralleled with industrial applications. The book covers oxidation catalysis, one of the major areas of industrial chemistry, outlining recent achievements, current challenges and future opportunities. One distinguishing feature of the book is the selection of arguments which are emblematic of current trends in the chemical industry, such as miniaturization, use of alternative, greener oxidants, and innovative systems for pollutant abatement. Topics outlined are described in terms of both catalyst and reaction chemistry, and also reactor and process technology.
Selective Oxidation by Heterogeneous Catalysis covers one of the major areas of industrial petrochemical production, outlining open questions and new opportunities. It gives keys for the interpretation and analysis of data and design of new catalysts and reactions, and provides guidelines for future research. A distinctive feature of this book is the use of concept by example. Rather than reporting an overview of the literature results, the authors have selected some representative examples, the in-depth analysis of which makes it possible to clarify the fundamental, but new concepts necessary for a better understanding of the new opportunities in this field and the design of new catalysts or catalytic reactions. Attention is given not only to the catalyst itself, but also to the use of the catalyst inside the process, thus evidencing the relationship between catalyst design and engineering aspects of the process. This book provides suggestions for new innovative directions of research and indications on how to reconsider the field of selective oxidation from different perspectives, outlining that is not a mature field of research, but that new important breakthroughs can be derived from fundamental and applied research. Suggestions are offered on how to use less conventional approaches in terms of both catalyst design and analysis of the data.
Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an international team of leading chemists representing both industry and academia. The book begins with a chapter on environmentally benign oxidants and then covers: Selective oxidations catalyzed by TS-1 and other metal-substituted zeolites Selective catalytic oxidation over ordered nanoporous metallo-aluminophosphates Selective oxidations catalyzed by mesoporous metal-silicates Liquid phase oxidation of organic compounds by supported metal-based catalysts Selective liquid phase oxidations in the presence of supported polyoxometalates Selective oxidations catalyzed by supported metal complexes Liquid phase oxidation of organic compounds by metal-organic frameworks Heterogeneous photocatalysis for selective oxidations with molecular oxygen All the chapters dedicated to specific types of catalysts follow a similar organization and structure, making it easy to compare the advantages and disadvantages of different catalysts. The final chapter examines the latest industrial applications, such as the production of catechol and hydroquinone, cyclohexanone oxime, and propylene oxide. With its unique focus on liquid phase heterogeneous oxidation catalysis, this book enables researchers in organic synthesis and oxidation catalysis to explore and develop promising new catalytic materials and synthetic routes for a broad range of industrial applications.
The overall theme of the 3rd World Congress is "Atom Efficient Catalytic Oxidations for Global Technologies". This theme was chosen to stimulate the participants to report their findings with an emphasis on conserving valuable material in their catalytic transformations, as well as conserving energy, in an environmentally responsible manner. Progress towards this stated goal is substantial as evidenced by the tremendous response of the community in their participation of quality publications complied in these Proceedings of the Congress.The subjects presented span a wide range of oxidation reactions and catalysts. These include the currently important area of lower alkane oxidation to the corresponding olefins, unsaturated aldehydes, acids and nitriles.The four featured lectures and seven plenary lectures constitute the general background and overview of the subject matter at hand. The 104 contributed papers and 13 poster manuscripts, summarized in this compendium, probe new avenues to achieve catalytically efficient oxidation reactions for the future needs of mankind in a global environment.
In many of the processes of oxidation catalysis, species with metal-carbon bonds are formed as key intermediates, and these processes represent the primary focus of this volume. An important aspect covered by some of the contributors is the use of organic ligands to achieve efficient oxidation catalysis. Each volume of "Topics in Organometallic Chemistry" provides a comprehensive summary and critical overview of a specific topic in organometallic chemistry.
Oxidation reactions are an important chemical transformation in both academia and industry. Among the major advances in the field has been the development of catalytic processes, which are not only selective and efficient, but also allow the replacement of common stoichiometric oxidants with molecular oxygen, ideally from air at atmospheric pressure. This results in processes with higher atom efficiency, where water is the only side product in line with the principles of green chemistry. Focusing on the use of molecular oxygen as the terminal oxidant, this book covers recent advances in both heterogeneous and homogeneous systems, with and without metals and on the “taming” of the highly reactive oxygen gas by use of micro-flow reactors and membranes. A useful reference for industrial and academic chemists working on oxidation processes, as well as green chemists.
With its two-volume structure, this handbook and ready reference allows for comprehensive coverage of both characterization and applications, while uniform editing throughout ensures that the structure remains consistent. The result is an up-to-date review of metal oxides in catalysis. The first volume covers a range of techniques that are used to characterize oxides, with each chapter written by an expert in the field. Volume 2 goes on to cover the use of metal oxides in catalytic reactions. For all chemists and engineers working in the field of heterogeneous catalysis.
Hydrogen peroxide is a chemical that is becoming increasingly fashionable as an oxidant, both in industry and in academia and whose production is expected to increase significantly in the next few years. This growth in interest is largely due to environmental considerations related to the clean nature of hydrogen peroxide as an oxidant, its by-product being only water. To date this chemical has largely been employed as a non-selective oxidant in operations like the bleaching of paper, cellulose and textiles, or in the formulation of detergents, and only to a minimal extent in the manufacture of organic chemicals. This book has been organized to cover the different aspects of the chemistry of hydrogen peroxide. The various chapters into which the book is divided have been written critically by the authors with the general aim of stimulating new ideas and emphasizing those aspects that are likely to lead to new developments in organic synthesis in the coming future.