Download Free Oscillation Bifurcation And Chaos Book in PDF and EPUB Free Download. You can read online Oscillation Bifurcation And Chaos and write the review.

This book presents a detailed analysis of bifurcation and chaos in simple non-linear systems, based on previous works of the author. Practical examples for mechanical and biomechanical systems are discussed. The use of both numerical and analytical approaches allows for a deeper insight into non-linear dynamical phenomena. The numerical and analytical techniques presented do not require specific mathematical knowledge.
Bifurcation and Chaos presents a collection of especially written articles describing the theory and application of nonlinear dynamics to a wide variety of problems encountered in physics and engineering. Each chapter is self-contained and includes an elementary introduction, an exposition of the present state of the art, and details of recent theoretical, computational and experimental results. Included among the practical systems analysed are: hysteretic circuits, Josephson circuits, magnetic systems, railway dynamics, rotor dynamics and nonlinear dynamics of speech. This book contains important information and ideas for all mathematicians, physicists and engineers whose work in R & D or academia involves the practical consequences of chaotic dynamics.
This book deals with the bifurcation and chaotic aspects of damped and driven nonlinear oscillators. The analytical and numerical aspects of the chaotic dynamics of these oscillators are covered, together with appropriate experimental studies using nonlinear electronic circuits. Recent exciting developments in chaos research are also discussed, such as the control and synchronization of chaos and possible technological applications.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
This book develops a general methodological approach to investigate complex physical systems presented by the author in a previous book. The nonlinear dynamics of coupled oscillators is investigated numerically and analytically. Three different mechanical, and one biomechanical, examples are used to demonstrate a general systematical approach to the study of dissipative dynamical systems. Many original examples of special chaotic behavior are discussed and illustrated.
The year 1986 marked the sesquicentennial of the publication in 1836 of J Sturm's memoir on boundary value problems for second order equations. In July 1986, the Canadian Mathematical Society sponsored the International Conference on Oscillation, Bifurcation and Chaos. This volume contains the proceedings of this conference.
Technical problems often lead to differential equations with piecewise-smooth right-hand sides. Problems in mechanical engineering, for instance, violate the requirements of smoothness if they involve collisions, finite clearances, or stick-slip phenomena. Systems of this type can display a large variety of complicated bifurcation scenarios that still lack a detailed description.This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems. The practical significance of these phenomena is demonstrated through a series of well-documented and realistic applications to switching power converters, relay systems, and different types of pulse-width modulated control systems. Other examples are derived from mechanical engineering, digital electronics, and economic business-cycle theory.The topics considered in the book include abrupt transitions associated with modified period-doubling, saddle-node and Hopf bifurcations, the interplay between classical bifurcations and border-collision bifurcations, truncated bifurcation scenarios, period-tripling and -quadrupling bifurcations, multiple-choice bifurcations, new types of direct transitions to chaos, and torus destruction in nonsmooth systems.In spite of its orientation towards engineering problems, the book addresses theoretical and numerical problems in sufficient detail to be of interest to nonlinear scientists in general.
During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study.Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.