Download Free Orthogonal Rational Functions Book in PDF and EPUB Free Download. You can read online Orthogonal Rational Functions and write the review.

This book generalises the classical theory of orthogonal polynomials on the complex unit circle, or on the real line to orthogonal rational functions whose poles are among a prescribed set of complex numbers. The first part treats the case where these poles are all outside the unit disk or in the lower half plane. Classical topics such as recurrence relations, numerical quadrature, interpolation properties, Favard theorems, convergence, asymptotics, and moment problems are generalised and treated in detail. The same topics are discussed for the different situation where the poles are located on the unit circle or on the extended real line. In the last chapter, several applications are mentioned including linear prediction, Pisarenko modelling, lossless inverse scattering, and network synthesis. This theory has many applications in theoretical real and complex analysis, approximation theory, numerical analysis, system theory, and in electrical engineering.
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.
Models of dynamical systems are of great importance in almost all fields of science and engineering and specifically in control, signal processing and information science. A model is always only an approximation of a real phenomenon so that having an approximation theory which allows for the analysis of model quality is a substantial concern. The use of rational orthogonal basis functions to represent dynamical systems and stochastic signals can provide such a theory and underpin advanced analysis and efficient modelling. It also has the potential to extend beyond these areas to deal with many problems in circuit theory, telecommunications, systems, control theory and signal processing. Modelling and Identification with Rational Orthogonal Basis Functions affords a self-contained description of the development of the field over the last 15 years, furnishing researchers and practising engineers working with dynamical systems and stochastic processes with a standard reference work.
This series of lectures treats certain amusing and interesting aspects of rational function approximations, striving for variety and diversity rather than depth or thoroughness. Graduate students and faculty, knowledgeable in the elements of real and complex analysis, should gain insight into recent developments in the field.
"This volume contains fourteen articles that represent the AMS Special Session on Special Functions and Orthogonal Polynomials, held in Tucson, Arizona in April of 2007. It gives an overview of the modern field of special functions with all major subfields represented, including: applications to algebraic geometry, asymptotic analysis, conformal mapping, differential equations, elliptic functions, fractional calculus, hypergeometric and q-hypergeometric series, nonlinear waves, number theory, symbolic and numerical evaluation of integrals, and theta functions. A few articles are expository, with extensive bibliographies, but all contain original research." "This book is intended for pure and applied mathematicians who are interested in recent developments in the theory of special functions. It covers a wide range of active areas of research and demonstrates the vitality of the field."--BOOK JACKET.
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? The present set of lecture notes contains seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions.
"Oulines an array of recent work on the analytic theory and potential applications of continued fractions, linear functionals, orthogonal functions, moment theory, and integral transforms. Describes links between continued fractions. Pade approximation, special functions, and Gaussian quadrature."