Download Free Orthogonal Frequency Division Multiplexing For Wireless Communications Book in PDF and EPUB Free Download. You can read online Orthogonal Frequency Division Multiplexing For Wireless Communications and write the review.

Orthogonal Frequency Division Multiplexing for Wireless Communications is an edited volume with contributions by leading authorities in the subject of OFDM. Its coverage consists of principles, important wireless topics (e.g. Synchronization, channel estimation, etc.) and techniques. Included is information for advancing wireless communication in a multipath environment with an emphasis on implementation of OFDM in base stations. Orthogonal Frequency Division Multiplexing for Wireless Communications provides a comprehensive introduction of the theory and practice of OFDM. To facilitate the readers, extensive subject indices and references are given at the end of the book. Even though each chapter is written by different experts, symbols and notations in all chapters of the book are consistent.
Orthogonal Frequency Division Multiplexing for Wireless Communications is an edited volume with contributions by leading authorities in the subject of OFDM. Its coverage consists of principles, important wireless topics (e.g. Synchronization, channel estimation, etc.) and techniques. Included is information for advancing wireless communication in a multipath environment with an emphasis on implementation of OFDM in base stations. Orthogonal Frequency Division Multiplexing for Wireless Communications provides a comprehensive introduction of the theory and practice of OFDM. To facilitate the readers, extensive subject indices and references are given at the end of the book. Even though each chapter is written by different experts, symbols and notations in all chapters of the book are consistent.
"The book examines several aspects of Orthogonal Frequency Division Multiplexing (OFDM) employing linear diversity techniques such as inter-carrier interference, bit error rate, peak to average power and inter-block interference. It should be a useful refe"
Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution. This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is a good choice as a modulation that can transmit at high data rates. The system-level approach we shall pursue will also point out the disadvantages of OFDM systems especially in the context of peak to average ratio, and carrier frequency synchronization. Finally, simulation of OFDM systems will be given due prominence. Simple MATLAB programs are provided for bit error rate simulation using a discrete-time OFDM representation. Software is also provided to simulate the effects of inter-block-interference, inter-carrier-interference and signal clipping on the error rate performance. Different components of the OFDM system are described, and detailed implementation notes are provided for the programs. The program can be downloaded here. Table of Contents: Introduction / Modeling Wireless Channels / Baseband OFDM System / Carrier Frequency Offset / Peak to Average Power Ratio / Simulation of the Performance of OFDM Systems / Conclusions
Thesis (M.A.) from the year 2019 in the subject Electrotechnology, grade: 9, , language: English, abstract: The Orthogonal Frequency Division Multiplexing (OFDM) is an important aspect of multicarrier digital data transmission system where a single data stream is transmitted into a several number of lower rates subcarrier signals. In this thesis, there are five different types of the techniques introduced to strengthen the communication quality and capacity. This kind of new standard of transmission of data is the first one to perform with OFDM in data packet based communication system. In wireless communication network, the abstraction of parallel transmission of data symbols is implemented to attain high throughput and effective transmission quality. The OFDM is a method to deal with parallel transmission.
"Professor Andreas F. Molisch, renowned researcher and educator, has put together the comprehensive book, Wireless Communications. The second edition, which includes a wealth of new material on important topics, ensures the role of the text as the key resource for every student, researcher, and practitioner in the field." —Professor Moe Win, MIT, USA Wireless communications has grown rapidly over the past decade from a niche market into one of the most important, fast moving industries. Fully updated to incorporate the latest research and developments, Wireless Communications, Second Edition provides an authoritative overview of the principles and applications of mobile communication technology. The author provides an in-depth analysis of current treatment of the area, addressing both the traditional elements, such as Rayleigh fading, BER in flat fading channels, and equalisation, and more recently emerging topics such as multi-user detection in CDMA systems, MIMO systems, and cognitive radio. The dominant wireless standards; including cellular, cordless and wireless LANs; are discussed. Topics featured include: wireless propagation channels, transceivers and signal processing, multiple access and advanced transceiver schemes, and standardised wireless systems. Combines mathematical descriptions with intuitive explanations of the physical facts, enabling readers to acquire a deep understanding of the subject. Includes new chapters on cognitive radio, cooperative communications and relaying, video coding, 3GPP Long Term Evolution, and WiMax; plus significant new sections on multi-user MIMO, 802.11n, and information theory. Companion website featuring: supplementary material on 'DECT', solutions manual and presentation slides for instructors, appendices, list of abbreviations and other useful resources.
Multi-carrier modulation, in particular orthogonal frequency division multiplexing (OFDM), has been successfully applied to a wide variety of digital communications applications for several years. Although OFDM has been chosen as the physical layer standard for a diversity of important systems, the theory, algorithms, and implementation techniques remain subjects of current interest. This book is intended to be a concise summary of the present state of the art of the theory and practice of OFDM technology. This book offers a unified presentation of OFDM theory and high speed and wireless applications. In particular, ADSL, wireless LAN, and digital broadcasting technologies are explained. It is hoped that this book will prove valuable both to developers of such systems, and to researchers and graduate students involved in analysis of digital communications, and will remain a valuable summary of the technology, providing an understanding of new advances as well as the present core technology.
OFDM is a promising technique for high-data-rate wireless communications because it can combat inter-symbol interference (ISI) caused by the dispersive fading of wireless channels. The proposed research focuses on techniques that improve the performance of OFDM-based wireless communications and its commercial and military applications. In particular, we address the following aspects of OFDM: inter-channel interference (ICI) suppression, interference suppression for clustered OFDM, clustered OFDM based anti-jamming modulation, channel estimation for MIMO-OFDM, MIMO transmission with limited feedback. For inter-channel interference suppression, a frequency domain partial response coding (PRC) scheme is proposed to mitigate ICI. We derive the near-optimal weights for PRC that is independent on the channel power spectrum. The error floor resulting from ICI can be reduced significantly using a two-tap or a three-tap PRC. Clustered OFDM is a new technique that has many advantages over traditional OFDM. In clustered OFDM systems, adaptive antenna arrays are used for interference suppression. To calculate weights for interference suppression, we propose a polynomial-based parameter estimator to combat the severe leakage of the DFT based estimator due to the small size of the cluster. An adaptive algorithm is developed to obtain optimal performance. For high data rate military communications, we propose a clustered OFDM base spread spectrum modulation to provide both anti-jamming and fading suppression capability. We analyze the performance of uncoded and coded system. Employing multiple transmit and receive antennas in OFDM systems (MIMO-OFDM) can increase the spectral efficiency and link reliability. We develop a minimum mean-square-error (MMSE) channel estimator that takes advantage of the spatial-frequency correlations in MIMO-OFDM systems to minimize the estimation error. We investigate the training sequence design and two optimal training sequence designs are given for arbitrary spatial correlations. For a MIMO system, the diversity and array gains can be obtained by exploiting channel information at the transmitter. For MIMO-OFDM systems, we propose a subspace tracking based approach that can exploit the frequency correlations of the OFDM system to reduce the feedback rate. The proposed approach does not need recalculate the precoding matrix and is robust to multiple data stream transmission.