Download Free Origin And Evolution Of Metazoan Cell Types Book in PDF and EPUB Free Download. You can read online Origin And Evolution Of Metazoan Cell Types and write the review.

The evolution of animal diversity is strongly affected by the origin of novel cell and tissue types and their interactions with each other. Understanding the evolution of cell types will shed light on the evolution of novel structures, and in turn highlight how animals diversified. Several cell types may also have been lost as animals simplified – for example did sponges have nerves and lose them? This book reveals the interplay between gains and losses and provides readers with a better grasp of the evolutionary history of cell types. In addition, the book illustrates how new cell types allow a better understanding permitting the discrimination between convergence and homology.
Recently, new genes and their proteins that revealed striking new insights into the early evolution of multicellular animals have been identified and characterized from members of the lowest metazoan phylum, the porifera (sponges). The unexpected result was that the sequences obtained from sponge displayed high similarity to those found in higher metazoa; in consequence, it was concluded that during the transition from protozoa to metazoa the major structural and regulatory proteins evolved only once. The data gathered are now powerful arguments to establish monophyly of metazoa; in addition, new insights on the evolutionary diversification of metazoa were obtained.
Analyzing animal development in a comparative framework provides a unique window into evolutionary history. With a long tradition that dates back to iconic 19th-century zoologists such as Ernst Haeckel and Charles Darwin, Evolutionary Developmental Biology is firmly rooted in morphological research. While studies using a classical model system approach have resulted in considerable methodological progress, in particular by establishing molecular genetic tools to tackle questions surrounding animal development, it quickly became obvious that a broad comparative dataset involving as many taxa as possible is necessary for sound evolutionary inferences. Thus, today’s EvoDevo embraces morphological, molecular, and experimental procedures, interpreted in a phylogenetic framework, in order to answer key questions that revolve around the evolution of animal cell types, organ systems, and, ultimately, entire species.
Paleontologist Simon Conway Morris provides a guided tour of the world's richest treasure trove of fossils--a fantastically rich deposit of bizarre and bewildering Cambrain fossils, located in Western Canada. 4 plates. 90 linecuts.
A unique account of the biology, ecology and evolution of choanoflagellates - the closest, known, living, unicellular relatives of animals.
Tackling one of the most difficult and delicate of the evolutionary questions, this challenging book summarizes the more recent results in phylogenetics and developmental biology that address the evolution of key innovations in metazoans. Divided into three sections, the first considers the phylogenetic issues involving this area of the tree of lif
The evolution of single cells into multicellular organisms was mediated, in large part, by the extracellular matrix. The proteins and glycoconjugates that make up the extracellular matrix provide structural support to cellular complexes, facilitate cell adhesion and migration, and impart mechanical properties that are important for tissue function. Each class of ECM macromolecule has evolved to incorporate distinctive properties that are defined by conserved modules that are mixed together to achieve appropriate function. This volume provides a comprehensive analysis of how the major ECM components evolved over time in order to fill their specific roles found in modern organisms. The major focus is on the structural matrix proteins, matricellular proteins, and more complex ECM structures such as basement membranes. Adhesive proteins and their receptors are also discussed.
Are humans a galactic oddity, or will complex life with human abilities develop on planets with environments that remain habitable for long enough? In a clear, jargon-free style, two leading researchers in the burgeoning field of astrobiology critically examine the major evolutionary steps that led us from the distant origins of life to the technologically advanced species we are today. Are the key events that took life from simple cells to astronauts unique occurrences that would be unlikely to occur on other planets? By focusing on what life does - it's functional abilities - rather than specific biochemistry or anatomy, the authors provide plausible answers to this question. Systematically exploring the various pathways that led to the complex biosphere we experience on planet Earth, they show that most of the steps along that path are likely to occur on any world hosting life, with only two exceptions: One is the origin of life itself – if this is a highly improbable event, then we live in a rather “empty universe”. However, if this isn’t the case, we inevitably live in a universe containing a myriad of planets hosting complex as well as microbial life - a “cosmic zoo”. The other unknown is the rise of technologically advanced beings, as exemplified on Earth by humans. Only one technological species has emerged in the roughly 4 billion years life has existed on Earth, and we don’t know of any other technological species elsewhere. If technological intelligence is a rare, almost unique feature of Earth's history, then there can be no visitors to the cosmic zoo other than ourselves. Schulze-Makuch and Bains take the reader through the history of life on Earth, laying out a consistent and straightforward framework for understanding why we should think that advanced, complex life exists on planets other than Earth. They provide a unique perspective on the question that puzzled the human species for centuries: are we alone?
Interrelationships of the Platyhelminthes elucidates the role of the flatworms in the animal kingdom. It brings together results from an international group of experts, spanning many disciplines, who give evidence for the phylogeny of flatworms and constituent major taxa. A combined approach, using traditional comparative techniques along with the modern techniques of molecular phylogeny, is utilized to show that the monophyly of the phylum is not fully established, and that the phylum may in fact consist of two groups: the acoels and their relatives, which are basal metazoans, and the Rhabditophora, which is a more derived group.
The interplay between Geology and Biology has shaped the Earth from the early Precambrian, 4 billion years ago. Moving beyond the borders of the classical core disciplines, Geobiology strives to identify chains of cause-and-effect and synergisms between the geo- and the biospheres that have been driving the evolution of life in modern and ancient environments. Combining modern methods, geobiological information can be extracted not only from visible remains of organisms, but also from organic molecules, rock fabrics, minerals, isotopes and other tracers. An understanding of these processes and their signatures reveals enormous applied potentials with respect to issues of environment protection, public health, energy and resource management. The Encyclopedia of Geobiology has been designed to act as a key reference for students, researchers, teachers, and the informed public and to provide basic, but comprehensible knowledge on this rapidly expanding discipline that sits at the interface between modern geo- and biosciences.