Download Free Organosulfur Chemistry In Asymmetric Synthesis Book in PDF and EPUB Free Download. You can read online Organosulfur Chemistry In Asymmetric Synthesis and write the review.

In this first book to gather the information on this hot topic otherwise widely spread throughout the literature, experienced editors and top international authors cover everything the reader needs -- from the synthesis of chiral organosulfur compounds to applications and catalysis: * Asymmetric synthesis of chiral sulfinates and sulfoxides * Synthesis and use of chiral dithioacetal derivatives, ylids, chiral sulfoximines and sulfinamides * Use of chiral sulfoxides as ligands in catalysis * Asymmetric reactions of alpha-sulfenyl, alpha-sulfinyl and alpha-sulfonyl carbanions. As a result, readers will be able to improve their own performance in asymmetric synthesis.
Provides the background, tools, and models required to understand organic synthesis and plan chemical reactions more efficiently Knowledge of physical chemistry is essential for achieving successful chemical reactions in organic chemistry. Chemists must be competent in a range of areas to understand organic synthesis. Organic Chemistry provides the methods, models, and tools necessary to fully comprehend organic reactions. Written by two internationally recognized experts in the field, this much-needed textbook fills a gap in current literature on physical organic chemistry. Rigorous yet straightforward chapters first examine chemical equilibria, thermodynamics, reaction rates and mechanisms, and molecular orbital theory, providing readers with a strong foundation in physical organic chemistry. Subsequent chapters demonstrate various reactions involving organic, organometallic, and biochemical reactants and catalysts. Throughout the text, numerous questions and exercises, over 800 in total, help readers strengthen their comprehension of the subject and highlight key points of learning. The companion Organic Chemistry Workbook contains complete references and answers to every question in this text. A much-needed resource for students and working chemists alike, this text: -Presents models that establish if a reaction is possible, estimate how long it will take, and determine its properties -Describes reactions with broad practical value in synthesis and biology, such as C-C-coupling reactions, pericyclic reactions, and catalytic reactions -Enables readers to plan chemical reactions more efficiently -Features clear illustrations, figures, and tables -With a Foreword by Nobel Prize Laureate Robert H. Grubbs Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis is an ideal textbook for students and instructors of chemistry, and a valuable work of reference for organic chemists, physical chemists, and chemical engineers.
Organosulfur Chemistry has enjoyed a renaissance of interest over the last few years, fuelled by its impact in the areas of heterocyclic and radical chemistry, and particularly stereocontrolled processes including asymmetric synthesis. One result of this resurgence of interest in the field is a rapidly escalating number of related publications. This volume is intended to provide coverage of some of the highlights of contemporary organosulfur chemistry chosen from the entire range of current activity.
Organosulfur Chemistry has enjoyed a renaissance of interest over the last few years, fuelled by its impact in the areas of heterocyclic and radical chemistry, and particularly stereocontrolled processes including asymmetric synthesis. One result of this resurgence of interest in the field is a rapidly escalating number of related publications. This volume is intended to provide coverage of some of the highlights of contemporary organosulfur chemistry chosen from the entire range of current activity.
Up until a few decades ago, chalcogen chemistry was mainly represented by the chemistry of sulfur-containing compounds. However, with the rise in research around selenium and tellurium compound chemistry, the field has developed significantly as it continues to uncover and understand the peculiarities chalcogens exhibit. Taking an introductory approach, this book is the foundation to the subject that has been long needed. Covering organic and inorganic synthesis, structural properties, coordination chemistry and computational modelling, all key classes of chalcogen compounds are illustrated. Applications across materials science, biology, pharmaceutical science and environmental topics highlight to readers the impact of chalcogen chemistry in many aspects of research. Edited by international leaders in the field, Chalcogen Chemistry brings together contributions from acclaimed researchers around the world. This book is ideal for newcomers and established researchers, and provides the first building block to uncovering this fascinating field.
The first handbook to focus on the asymmetric synthesis of different types of three-membered rings. The outstanding and experienced authors have an excellent international reputation and cover cyclopropanes, epoxides and aziridines as well as chiral oxaziridines in equal measure. To this end, they describe in detail different synthetic approaches starting with chiral substrates as well as the application of chiral metal- or organocatalysts. Furthermore, methods for the kinetic resolution of initially racemic products are treated alongside recent advances and novel developments in established techniques for the synthesis of three-membered rings. With its structured composition this is of high interest to scientists in methodological and natural product synthesis as well as those in industrial and pharmaceutical chemistry.
Written by world-renowned and best-selling experts, Nobel Laureate E. J. Corey and Laszlo Kurti, Enantioselective Chemical Synthesis offers an authoritative and comprehensive overview of the field's progress; the processes and tools for key formations; future development for complex, stereocontrolled (enantiomeric or diastereoisomeric) molecules; and valuable examples of multi-step syntheses. Utilizing a color-coded scheme to illustrate chemical transformations, Enantioselective Chemical Synthesis provides clear explanation and guidance through vital asymmetrical syntheses and insight into the next steps for the field. Researchers, professionals, and academics will benefit from this valuable, thorough, and unique resource. - In Part I, the authors present clearly, comprehensively and concisely the most useful enantioselective processes available to synthetic chemists. - Part II provides an extensive discussion of the most logical ways to apply these new enantioselective methods to the planning of syntheses of stereochemically complex molecules. This hitherto neglected area is essential for the advancement of enantioselective synthesis to a more rational and powerful level. - Part III describes in detail many reaction sequences which have been used successfully for the construction of a wide variety of complex target molecules - Clearly explains stereochemical synthesis in theory and practice - Provides a handy tool box for scientists wishing to understand and apply chiral chemical synthesis - Describes almost 50 real life examples of asymmetric synthesis in practice and examines how the chiral centers were introduced at key synthetic stages
Over the last three decades, more than 40 different classes of chiral (mirror-image) sulfur compounds have been described, and a number of useful procedures and applications have been developed for their use. Emphasizing modern methodologies, Chiral Sulfur Reagents demonstrates the great potential of enantionmerically pure sulfur reagents in transmitting chirality to other centers. Each chapter highlights the synthesis and synthetic uses of a particular class of chiral sulfur reagent, followed by examples of the most important experimental procedures.
Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.