Download Free Organometallics For Energy Conversion Book in PDF and EPUB Free Download. You can read online Organometallics For Energy Conversion and write the review.

This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developments in these emerging areas, with an emphasis on fundamental concepts and current applications of functional organometallic complexes and related metal-based molecules for energy research. With contributions from front-line researchers in the field from academia and industry, this timely book provides a valuable contribution to the scientific community in the field of energy science related to metal-based molecular materials. Wai-Yeung Wong, PhD, is Chair Professor and Head of the Department of Chemistry at Hong Kong Baptist University, Hong Kong, P. R. China.
This volume presents the latest developments in the use of organometallic catalysis for the formation of bulk chemicals and the production of energy, via green processes including efficient utilization of waste feedstocks from industry. The chemistry of carbon dioxide relating to its hydrogenation into methanol –an eco-friendly energy storage strategy– and its uses as C1 synthon for the formation of important building-blocks for fine chemicals industry are covered. Catalytic hydrogenations of various functional groups and hydrogen transfer reactions including the use of first row metal catalysts are presented as well as the conversion of alcohols to carboxylates via hydrogen transfer with a zero-waste strategy using water. Transformation of renewable or bio-based raw materials is surveyed through alkene metathesis and C–O bond activations and functionalizations. A green aspect for selective formation of C-C, C-O and C-N bonds involves direct regioselective C–H bond activations and functionalizations. These transformations can now be promoted under mild reaction conditions due to the use photoredox catalyts. C–H bond oxidation using visible light leads mainly to the formation of C–O and C–N bonds, whereas cross-coupled C–C bonds can be formed through the radical additions on (hetero) arenes using photoredox assisted mechanism.
This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developments in these emerging areas, with an emphasis on fundamental concepts and current applications of functional organometallic complexes and related metal-based molecules for energy research. With contributions from front-line researchers in the field from academia and industry, this timely book provides a valuable contribution to the scientific community in the field of energy science related to metal-based molecular materials. Wai-Yeung Wong, PhD, is Chair Professor and Head of the Department of Chemistry at Hong Kong Baptist University, Hong Kong, P. R. China.
Provides vital information on organometallic compounds, their preparation, and use in synthesis, and explores the fundamentals of the field and its modern applications Fully updated and expanded to reflect recent advances, the new, seventh edition of this bestselling text presents students and professional chemists with a comprehensive introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications. Increased focus is given to organic synthesis applications, nanoparticle science, and green chemistry. This edition features up-to-date examples of fundamental reaction steps and greater emphasis on key topics like oxidation catalysis, CH functionalization, nanoclusters and nanoparticles, and green chemistry. New coverage is added for computational chemistry, energy production, and biochemical aspects of organometallic chemistry. The Organometallic Chemistry of the Transition Metals, Seventh Edition provides new/enhanced chapter coverage of ligand-assisted additions and eliminations; proton-coupled electron transfer; surface, supported, and cooperative catalysis; green, energy, and materials applications; and photoredox catalysis. It covers coordination chemistry; alkyls and hydrides; Pi-complexes; and oxidative addition and reductive elimination. The book also features sections on insertion and elimination; spectroscopy; metathesis polymerization and bond activation; and more. Provides an excellent foundation of the fundamentals of organometallic chemistry Includes end-of-chapter problems and their solutions Expands and includes up-to-date examples of fundamental reaction steps and focuses on important topics such as oxidation catalysis, CH functionalization, nanoparticles, and green chemistry Features all new coverage for computational chemistry, energy production, and biochemical aspects of organometallic chemistry The Organometallic Chemistry of the Transition Metals, Seventh Edition is an insightful book that will appeal to all advanced undergraduate and graduate students in organic chemistry, organometallic chemistry, inorganic chemistry, and bioinorganic chemistry, as well as any practicing chemist in those fields.
Arvind Kumar, Shih-Sheng Sun, and Alistair J. Lees: Photophysics and Photochemistry of Organometallic Rhenium Diimine Complexes; Conor Long: Photophysics of CO Loss from Simple Metal Carbonyl Complexes; Antonín Vlcek Jr: Ultrafast Excited-State Processes in Re(I) Carbonyl-Diimine Complexes: From Excitation to Photochemistry; Kenneth Kam-Wing Lo: Exploitation of Luminescent Organometallic Rhenium(I) and Iridium(III) Complexes in Biological Studies; Maria L. Muro , Aaron A. Rachford , Xianghuai Wang, and Felix N. Castellano: Platinum II Acetylide Photophysics; Andreas F. Rausch, Herbert H. H. Homeier, and Hartmut Yersin: Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin–Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal
Organometallic Compounds An up-to-date overview of the fundamentals, synthesis, and applications of organometallic compounds Organometallic Compounds: Synthesis, Reactions, and Applications delivers an accessible and robust introduction to the fundamentals of organometallic compounds, including their reactions, catalytic mechanisms, and modern applications, including carbon-dioxide fixation, reduction, gas adsorption and purification, drug delivery, renewable energy, and wastewater treatment. The book also covers toxicological and computational studies. The authors address the current challenges confronting researchers seeking to sustainably synthesize and process organometallic compounds and offer complete coverage on the most recent advancements in applications relating to the fields of environmental science, electronics, fossil fuels, and more. Readers will also find: Introduces to fundamentals, nomenclature, properties, and classification of organometallic compounds Discusses methods of synthesis of organometallic compounds Practical discussions of organometallic complexes of the lanthanoids and actinoids, as well as bio-organometallic chemistry Includes characterization techniques of organometallic compounds Perfect for organic, environmental, inorganic, water, and catalytic chemists, Organometallic Compounds: Synthesis, Reactions, and Applications will also benefit chemical engineers and industrial chemists.
Photosensitization and photocatalysis refer to processes by which permanent chemical transformations are induced on substrates (organic/inorganic) by radiation to which the substrates themselves are transparent. Such transformations can be highly specific, very efficient, and occur under mild conditions. Herein lies the power of photochemical methods for possible applications in the field of conversion and storage of solar energy. This book provides a recent survey of the progress in this important area in catalysis, with an emphasis on inorganic complexes and organometallic compounds as the key light aborbers. The book is organized in three parts: fundamentals, followed by applications. Discussions cover a wide variety of photosensitized or photocatalyzed reactions: decomposition of water, reduction of CO2 and CO; spectral sensitization in photoelectrochemical cells; transformations (oxidation, reduction, isomerization, hydrogenation, dehydrogenation, carbonylation, etc.) of organics such as alkanes, alkenes, alcohols, etc. In view of the variety of systems (sensitizers, substrates) and the topics covered, the volume is unique in the field of photochemistry and will appeal to academic and industrial researchers in various subdisciplines of chemistry, material science and catalysis.
Revolutionizing Energy Conversion - Photoelectrochemical Technologies and Their Role in Sustainability offers a comprehensive exploration of the latest advancements in photoelectrochemical (PEC) technologies and microbial fuel cells (MFCs), two rapidly evolving fields at the forefront of sustainable energy research. This book presents a curated collection of cutting-edge studies that examine the innovative materials, processes, and applications driving the future of energy conversion. By harnessing the power of light and microbial activity, these technologies provide promising solutions to the global challenge of reducing our reliance on fossil fuels. Readers will gain insights into the potential of PEC systems for hydrogen production, solar energy harvesting, and smart energy storage, as well as the emerging role of MFCs in sustainable electricity generation. This book is an essential resource for researchers, engineers, and policymakers seeking to understand the transformative impact of these technologies on the energy landscape. With a focus on practical applications and sustainability, it highlights the potential of PEC and MFC technologies to revolutionize energy conversion, contributing to a cleaner, more sustainable future.
The first to combine both the bioinorganic and the organometallic view, this handbook provides all the necessary knowledge in one convenient volume. Alongside a look at CO2 and N2 reduction, the authors discuss O2, NO and N2O binding and reduction, activation of H2 and the oxidation catalysis of O2. Edited by the highly renowned William Tolman, who has won several awards for his research in the field.