Download Free Organic Flexible Electronics Book in PDF and EPUB Free Download. You can read online Organic Flexible Electronics and write the review.

Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. - Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues - Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications - Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics
Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics. The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. - Reviews the properties and production of various flexible organic materials. - Describes the integration technologies of flexible organic electronics and their manufacturing methods. - Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.
The field of flexible electronics has grown rapidly over the last two decades with diverse applications including wearable gadgets and medical equipment. This textbook comprehensively covers the fundamental aspects of flexible electronics along with materials and processing techniques. It discusses topics including flexural rigidity, flexible PCBs, organic semiconductors, nanostructured materials, material reliability, electronic reliability, crystalline and polymer materials, semiconductor processing, and flexible silicon in depth. The text covers advantages, disadvantages, and applications of processes such as sol-gel processing and ink-jet printing. Pedagogical features such as solved problems and unsolved exercises are interspersed throughout the text for better understanding. FEATURES Covers major areas such as materials, physics, processes, and applications of flexible electronics Contains homework problems for readers to understand concepts in an easy manner Discusses, in detail, various types of materials, such as flexible silicon, metal oxides, and organic semiconductors Explains the application of flexible electronics in displays, solar cells, and batteries Includes a section on stretchable electronics This textbook is primarily written for senior undergraduate and graduate students in electrical engineering, electronics, materials science, chemistry, and communication engineering for a course on flexible electronics. Teaching resources are available, including a solutions manual for instructors.
This excellent volume covers a range of materials used for flexible electronics, including semiconductors, dielectrics, and metals. The functional integration of these different materials is treated as well. Fundamental issues for both organic and inorganic materials systems are included. A corresponding overview of technological applications, based on each materials system, is presented to give both the non-specialist and the researcher in the field relevant information on the status of the flexible electronics area.
Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.
This textbook provides a basic understanding of the principles of the field of organic electronics, through to their applications in organic devices. Useful for both students and practitioners, it is a teaching text as well as an invaluable resource that serves as a jumping-off point for those interested in learning, working and innovating in this rapidly growing field. Organics serve as a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to fit onto irregularly shaped surfaces such as foldable smart phones. Organic electronics is at the core of the global organic light emitting device (OLED) display industry. OLEDs also have potential uses as lighting sources. Other emerging organic electronic applications include organic solar cells, and organic thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book is a product of both one and two semester courses that have been taught over a period of more than two decades. It is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. A background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie somewhat outside of the current mainstream of the field, but are nevertheless important.
This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.
This book treats the important issues of interface control in organic devices in a wide range of applications that cover from electronics, displays, and sensors to biorelated devices. This book is composed of three parts: Part 1, Nanoscale interface; Part 2, Molecular electronics; Part 3, Polymer electronics.
This book is an introductory text for graduate students, researchers in industries, and those who are just beginning to work on organic electronics materials, devices and their applications. The book includes mainly fundamental principles and theories for understanding organic electronics materials and devices, but also provides information about state-of-the-art technologies, applications and future prospects. These topics encompass physics for organic transistors, structure control technologies of polymer semiconductors, nanomaterials electronics, organic solar cells, organic electroluminescence, liquid semiconductors and dynamics for excitation, among others. This book will help researchers to be able to contribute to society with the technologies and science of organic electronics materials in the future.