Download Free Organic Bioelectronics For Life Science And Healthcare Book in PDF and EPUB Free Download. You can read online Organic Bioelectronics For Life Science And Healthcare and write the review.

Novel bio-electronic devices have a great potential for gathering biological information such as vital signs, cell behavior, protein and DNA molecule concentrations. The book presents concrete examples and shows that there are lots of sensing targets still remaining to be handled. Organic materials offer high sensitivity, flexibility and biocompatibility, and can be prepared by novel fabrication methods such as printing and coating at low cost. Part 1: OFET-based sensors. Part 2: Graphene-based materials and sensor device applications. Part 3: Applications of bio-sensing technologies, inkjet printing, tests for stroke monitoring, etc. Keywords: Organic Bioelectronics, Bioelectronic Devices, Biosensing Technologies, Organic Field Effect Transistor (OFET), OFET-based Sensor, Functional Bio-Interlayer OFET, Electrolyte-gated OFET, Organic Charge-Modulated FET, Graphene-based Materials, Carbon Nanotube, Carbon-based Biosensors, Inkjet Printing, Stroke Monitoring
Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies for cell-sensing applications Enzyme biosensors Future directions for breath sensors Solid-state gas sensors for clinical diagnosis The second part of the book deals with sensors for medical applications. This section addresses: Bio-sensing and human behavior measurements Sweat rate wearable sensors Various aspects of medical imaging The future of medical imaging Spatial and spectral resolution aspects of semiconductor detectors in medical imaging CMOS SSPM detectors CdTe detectors and their applications to gamma-ray imaging Positron emission tomography (PET) Composed of contributions from some of the world’s foremost experts in their respective fields, this book covers a wide range of subjects. It explores everything from sensors and communication systems found in nature to the latest advances in manmade sensors. The end result is a useful collection of stimulating insights into the many exciting applications of sensor technologies in everyday life.
This wide-ranging summary of bioelectronics provides the state of the art in electronics integrated and interfaced with biological systems in one single book. It is a perfect reference for those involved in developing future distributed diagnostic devices, from smart bio-phones that will monitor our health status to new electronic devices serving our bodies and embedded in our clothes or under our skin. All chapters are written by pioneers and authorities in the key branches of bioelectronics and provide examples of real-word applications and step-by-step design details. Through expert guidance, you will learn how to design complex circuits whilst cutting design time and cost and avoiding mistakes, misunderstandings, and pitfalls. An exhaustive set of recently developed devices is also covered, providing the implementation details and inspiration for innovating new solutions and devices. This all-inclusive reference is ideal for researchers in electronics, bio/nanotechnology, and applied physics, as well as circuit and system-level designers in industry.
This book reviews the rapidly emerging field of switchable interfaces and its implications for bioelectronics. The authors piece together early breakthroughs and key developments and highlight the future of switchable bioelectronics by focusing on bioelectrochemical processes based on mimicking and controlling biological environments with external stimuli as well as responsive systems for drug delivery. All chapters in the book strive to answer the fundamental question: How do living systems probe and respond to their surroundings? Following on from that, how can one transform these concepts to serve the practical world of bioelectronics? The central obstacle to this vision is the absence of versatile interfaces that are able to control and regulate the means of communication between biological and electronic systems. This book summarizes the overall progress made to date in building such interfaces at the level of individual biomolecules and focuses on the latest efforts to generate device platforms that integrate biointerfaces with electronics. Chapter 1 introduces the general concept of dynamic interfaces for bioelectronics and gives an overview of the importance of materials and systems for switchable bioelectronics, introducing the reader to different biointerfaces. Chapter 2 pieces together different types of stimuli-responsive polymers and applications. Chapter 3 lays special emphasis on stimuli-responsive polymers with tunable release kinetics and describes the importance of polymer design for delivery applications. Chapter 4 reviews the field of conformational switching in nanofibers for gas-sensing applications. Finally, Chapter 5 focuses on molecular imprinting polymers as recognition elements for sensing applications. As informative as it is lucid, this handbook makes an essential resource for advanced undergraduate- and graduate-level students in chemistry, as well as researchers in polymer science and electrochemistry, especially those with an interest in responsive polymers and biosensors.
An overview of the tremendous potential of organic electronics, concentrating on those emerging topics and technologies that will form the focus of research over the next five to ten years. The young and energetic team of editors with an excellent research track record has brought together internationally renowned authors to review up-and-coming topics, some for the first time, such as organic spintronics, iontronics, light emitting transistors, organic sensors and advanced structural analysis. As a result, this book serves the needs of experienced researchers in organic electronics, graduate students and post-doctoral researchers, as well as scientists active in closely related fields, including organic chemical synthesis, thin film growth and biomaterials. Cover Figure: With kind permission of Matitaccia.
The book provides a single volume covering detailed descriptions about various delivery systems, their principles and how these are put in use for the treatment of multiple diseases. It is divided into four sections where the first section deals with the introduction and importance of novel drug delivery system. The second section deals with the most advanced drug delivery systems like microbubbles, dendrimers, lipid-based nanoparticles, nanofibers, microemulsions etc., describing the major principles and techniques of the preparations of the drug delivery systems. The third section elaborates on the treatments of diverse diseases like cancer, topical diseases, tuberculosis etc. The fourth and final section provides a brief informative description about the regulatory aspects of novel drug delivery system that is followed in various countries.
Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. - Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues - Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications - Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics
Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices
Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. - Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare - Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin - Examines and discusses the future of wearable bioelectronics - Addresses the wearable electronics market as a development of the healthcare industry