Download Free Organic Analysis Using Ion Selective Electrodes Methods Book in PDF and EPUB Free Download. You can read online Organic Analysis Using Ion Selective Electrodes Methods and write the review.

The critically acclaimed guide to the principles, techniques, and instruments of electroanalytical chemistry-now expanded and revised Joseph Wang, internationally renowned authority on electroanalytical techniques, thoroughly revises his acclaimed book to reflect the rapid growth the field has experienced in recent years. He substantially expands the theoretical discussion while providing comprehensive coverage of the latest advances through late 1999, introducing such exciting new topics as self-assembled monolayers, DNA biosensors, lab-on-a-chip, detection for capillary electrophoresis, single molecule detection, and sol-gel surface modification. Along with numerous references from the current literature and new worked-out examples, Analytical Electrochemistry, Second Edition offers clear, reader-friendly explanations of the fundamental principles of electrochemical processes as well as important insight into the potential of electroanalysis for problem solving in a wide range of fields, from clinical diagnostics to environmental science. Key topics include: The basics of electrode reactions and the structure of the interfacial region Tools for elucidating electrode reactions and high-resolution surface characterization An overview of finite-current controlled potential techniques Electrochemical instrumentation and electrode materials Principles of potentiometric measurements and ion-selective electrodes Chemical sensors, including biosensors, gas sensors, solid-state devices, and sensor arrays
We continue in this second volume the plan evident in the first; i.e., of presenting a number of well-rounded up-to-date reviews of important developments in the exciting field of ion-selective electrodes in analytical chemistry. In this volume, in addition to the exciting applications of ISE'S to biochemistry systems represented by the description of enzyme electrodes, there is featured the most recent development in ISE'S, namely, the joining of the electrochemical and solid state expertise, resulting in CHEMFETS. The scholarly survey of the current status of ISE'S will undoubtedly be welcomed by all workers in the field. Tucson, Arizona Henry Freiser vii Contents Chapter 1 Potentiometric Enzyme Methods Robert K. Kobos 1. Introduction . . . . . . 1 2. Soluble Enzyme Systems . . . 5 2.1. Substrate Determinations 5 2.2. Enzyme Determinations . 13 2.3. Inhibitor Determinations. 18 3. Immobilized Enzyme Systems . 19 3.1. Methods of Immobilization. 19 3.2. Characteristics of Immobilized Enzymes 23 3.3. Analytical Applications with Ion-Selective Electrodes 23 4. Enzyme Electrodes 31 4.1. Urea Electrodes 35 4.2. Amygdalin Electrodes 39 4.3. Glucose Electrodes . 40 4.4. Penicillin Electrodes 40 4.5. Amino Acid Electrodes 41 4.6. Nucleotide Electrodes 46 4.7. Uric Acid Electrode 47 4.8. Creatinine Electrode 48 48 4.9. Acetylcholine Electrodes. 4.10. D-Gluconate Electrode 49 4.11. Lactate Electrode 49 4.12. Inhibitor Determination 50 4.13. Substrate Electrodes 50 4.14. Current Trends . . . .
The intention was to produce a book which perforce would never be far from the laboratory, although CRC‘s use of Handbook in another connection precludes our use of that word in the title.
The Principles of Ion Selective Electrodes and of Membrane Transport is a collection of research works on the theory, principles, and fundamentals of ion-selective electrodes and of membrane transport. This book is organized into two parts encompassing 15 chapters that highlight the application of the membrane model. Part A is a general discussion of membrane potentials and membrane transport. This part describes the formulations of the interfacial potential contribution due to phase boundaries. This part also explores the diffusion potential, the nonideality of diffusion layers or membrane phases, the liquid-junction potential arising in conventional potentiometric measuring cells. Other topics covered in this part include the practical solution for the membrane potential; the ion-transport and the electrical properties of bulk membranes; and the characteristics of lipid bilayer membranes. Part B considers the fundamentals of ion-selective electrodes. This part begins with discussions of the principles, response behavior, ion selectivity, and detection limits of solid-state membrane electrodes. This part also examines several important extensions and modifications of the Sandblom-Eisenman-Walker theory; the characteristics of neutral carrier membrane electrodes; and the theory of glass electrodes.
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered. Advanced students, researchers, and practitioners will benefit from this expedient introduction.
The first section introduces the electrochemical nomenclature necessary for under standing the literature on ion-selective electrodes and discusses the general principles behind all electrodes. The second section is concerned with the problems which arise in any accurate elec trode potential measurement in practice. Here the most important reference electrodes are discussed with special reference to their use in conjunction with ion-selective elec trodes. From experience, almost 75% of all problems which arise when working with ion-selective electrodes are on account of the reference electrode. After the reader is aquainted with the basic problems involved, the third section deals with individual ion-selective electrodes; their properties, handling and methods of pre paration. Here the discussion of these electrodes is not arranged according to the spe cies detected, but rather according to the kind of construction, since from this view point characteristic properties are much the same and handling procedures need only be described once for an entire series of similar electrodes. The fourth section discusses amplifiers. Here the problems of high-ohmic EMF meas urements such as noise level, insulation, static charging and ground loops are discussed. The fifth section is devoted to the various evaluation methods. Here a few schemes and examples are provided to indicate optimum practical procedures and the accura cies attainable with the various methods are discussed. The last section describes special set-ups such as clinical flow-thru cells, microelec trodes for measuring intracellular ionic activities, industrial on-line techniques and continuous environmental protection monitors.
Written both for the novice and for the experienced scientist, this miniature encyclopedia concisely describes over one hundred materials methodologies, including evaluation, chemical analysis, and physical testing techniques. Each technique is presented in terms of its use, sample requirements, and the engineering principles behind its methodology. Real life industrial and academic applications are also described to give the reader an understanding of the significance and utilization of technique. There is also a discussion of the limitations of each technique.