Download Free Organelle Genetics Book in PDF and EPUB Free Download. You can read online Organelle Genetics and write the review.

Mitochondria and chloroplasts are eukaryotic organelles that evolved from bacterial ancestors and harbor their own genomes. The gene products of these genomes work in concert with those of the nuclear genome to ensure proper organelle metabolism and biogenesis. This book explores the forces that have shaped the evolution of organelle genomes and the expression of the genes encoded by them. Some striking examples of trends in organelle evolution explored here are the reduction in genome size and gene coding content observed in most lineages, the complete loss of organelle DNA in certain lineages, and the unusual modes of gene expression that have emerged, such as the extensive and essential mRNA editing that occurs in plant mitochondria and chloroplasts. This book places particular emphasis on the current techniques used to study the evolution of organelle genomes and gene expression.
The compartmentation of genetic information is a fundamental feature of the eukaryotic cell. The metabolic capacity of a eukaryotic (plant) cell and the steps leading to it are overwhelmingly an endeavour of a joint genetic cooperation between nucleus/cytosol, plastids, and mitochondria. Alter ation of the genetic material in anyone of these compartments or exchange of organelles between species can seriously affect harmoniously balanced growth of an organism. Although the biological significance of this genetic design has been vividly evident since the discovery of non-Mendelian inheritance by Baur and Correns at the beginning of this century, and became indisputable in principle after Renner's work on interspecific nuclear/plastid hybrids (summarized in his classical article in 1934), studies on the genetics of organelles have long suffered from the lack of respectabil ity. Non-Mendelian inheritance was considered a research sideline~ifnot a freak~by most geneticists, which becomes evident when one consults common textbooks. For instance, these have usually impeccable accounts of photosynthetic and respiratory energy conversion in chloroplasts and mitochondria, of metabolism and global circulation of the biological key elements C, N, and S, as well as of the organization, maintenance, and function of nuclear genetic information. In contrast, the heredity and molecular biology of organelles are generally treated as an adjunct, and neither goes as far as to describe the impact of the integrated genetic system.
Within the past two decades, extraordinary new functions for the nucleolus have begun to appear, giving the field a new vitality and generating renewed excitement and interest. These new discoveries include both newly-discovered functions and aspects of its conventional role. The Nucleolus is divided into three parts: nucleolar structure and organization, the role of the nucleolus in ribosome biogenesis, and novel functions of the nucleolus.
Chloroplasts in photosynthetic organisms and mitochondria in a vast majority of eukaryotes, contain part of the genetic material of a eukaryotic cell. The organisation and inheritance patterns of this organellar DNA are quite different to that of nuclear DNA. Present-day chloroplast and mitochondrial genomes contain only a few dozen genes. Nevertheless, these organelles harbor several thousand proteins, the vast majority of them encoded by the nucleus. As a result, the expression of nuclear and organelle genomes has to be very precisely coordinated.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
Advances in Botanical Research publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences. Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology. This thematic volume features reviews on Mitochondrial genome evolution. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology and ecology This thematic volume features reviews on mitochondrial genome evolution
Plant Cells and Their Organelles provides a comprehensive overview of the structure and function of plant organelles. The text focuses on subcellular organelles while also providing relevant background on plant cells, tissues and organs. Coverage of the latest methods of light and electron microscopy and modern biochemical procedures for the isolation and identification of organelles help to provide a thorough and up-to-date companion text to the field of plant cell and subcellular biology. The book is designed as an advanced text for upper-level undergraduate and graduate students with student-friendly diagrams and clear explanations.
Although debated since the time of Darwin, the evolutionary role of mutation is still controversial. In over 40 chapters from leading authorities in mutation and evolutionary biology, this book takes a new look at both the theoretical and experimental measurement and significance of new mutation. Deleterious, nearly neutral, beneficial, and polygenic mutations are considered in their effects on fitness, life history traits, and the composition of the gene pool. Mutation is a phenomenon that draws attention from many different disciplines. Thus, the extensive reviews of the literature will be valuable both to established researchers and to those just beginning to study this field. Through up-to-date reviews, the authors provide an insightful overview of each topic and then share their newest ideas and explore controversial aspects of mutation and the evolutionary process. From topics like gonadal mosaicism and mutation clusters to adaptive mutagenesis, mutation in cell organelles, and the level and distribution of DNA molecular changes, the foundation is set for continuing the debate about the role of mutation, fitness, and adaptability. It is a debate that will have profound consequences for our understanding of evolution.
We have taught plant molecular biology and biotechnology at the undergraduate and graduate level for over 20 years. In the past few decades, the field of plant organelle molecular biology and biotechnology has made immense strides. From the green revolution to golden rice, plant organelles have revolutionized agriculture. Given the exponential growth in research, the problem of finding appropriate textbooks for courses in plant biotechnology and molecular biology has become a major challenge. After years of handing out photocopies of various journal articles and reviews scattered through out the print and electronic media, a serendipitous meeting occurred at the 2002 IATPC World Congress held in Orlando, Florida. After my talk and evaluating several posters presented by investigators from my laboratory, Dr. Jacco Flipsen, Publishing Manager of Kluwer Publishers asked me whether I would consider editing a book on Plant Organelles. I accepted this challenge, after months of deliberations, primarily because I was unsuccessful in finding a text book in this area for many years. I signed the contract with Kluwer in March 2003 with a promise to deliver a camera-ready textbook on July 1, 2004. Given the short deadline and the complexity of the task, I quickly realized this task would need a co-editor. Dr. Christine Chase was the first scientist who came to my mind because of her expertise in plant mitochondria, and she readily agreed to work with me on this book.