Download Free Organelle Contact Sites Book in PDF and EPUB Free Download. You can read online Organelle Contact Sites and write the review.

This book provides the first comprehensive coverage of the quickly evolving research field of membrane contact sites (MCS). A total of 16 chapters explain their organization and role and unveil the significance of MCS for various diseases. MCS, the intracellular structures where organellar membranes come in close contact with one another, mediate the exchange of proteins, lipids, and ions. Via these functions, MCS are critical for the survival and the growth of the cell. Owing to that central role in the functioning of cells, MCS dysfunctions lead to important defects of human physiology, influence viral and bacterial infection, and cause disease such as inflammation, type II diabetes, neurodegenerative disorders, and cancer. To approach such a multifaceted topic, this volume assembles a series of chapters dealing with the full array of research about MCS and their respective roles for diseases. Most chapters also introduce the history and the state of the art of MCS research, which will initiate discussion points for the respective types of MCS for years to come. This work will appeal to all cell biologists as well as researchers on diseases that are impacted by MCS dysfunction. Additionally, it will stimulate graduate students and postdocs who will energize, drive, and develop the research field in the near future.
Bridging the gap between basic scientific advances and the understanding of liver disease — the extensively revised new edition of the premier text in the field. The latest edition of The Liver: Biology and Pathobiology remains a definitive volume in the field of hepatology, relating advances in biomedical sciences and engineering to understanding of liver structure, function, and disease pathology and treatment. Contributions from leading researchers examine the cell biology of the liver, the pathobiology of liver disease, the liver’s growth, regeneration, metabolic functions, and more. Now in its sixth edition, this classic text has been exhaustively revised to reflect new discoveries in biology and their influence on diagnosing, managing, and preventing liver disease. Seventy new chapters — including substantial original sections on liver cancer and groundbreaking advances that will have significant impact on hepatology — provide comprehensive, fully up-to-date coverage of both the current state and future direction of hepatology. Topics include liver RNA structure and function, gene editing, single-cell and single-molecule genomic analyses, the molecular biology of hepatitis, drug interactions and engineered drug design, and liver disease mechanisms and therapies. Edited by globally-recognized experts in the field, this authoritative volume: Relates molecular physiology to understanding disease pathology and treatment Links the science and pathology of the liver to practical clinical applications Features 16 new “Horizons” chapters that explore new and emerging science and technology Includes plentiful full-color illustrations and figures The Liver: Biology and Pathobiology, Sixth Edition is an indispensable resource for practicing and trainee hepatologists, gastroenterologists, hepatobiliary and liver transplant surgeons, and researchers and scientists in areas including hepatology, cell and molecular biology, virology, and drug metabolism.
The combination of electron microscopy with transmitted light microscopy (termed correlative light and electron microscopy; CLEM) has been employed for decades to generate molecular identification that can be visualized by a dark, electron-dense precipitate. This new volume of Methods in Cell Biology covers many areas of CLEM, including a brief history and overview on CLEM methods, imaging of intermediate stages of meiotic spindle assembly in C. elegans embryos using CLEM, and capturing endocytic segregation events with HPF-CLEM. Covers many areas of CLEM by the best international scientists in the field Includes a brief history and overview on CLEM methods
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
The purpose of this volume is to provide a synopsis of present knowledge of the structure, organisation, and function of cellular organelles with an emphasis on the examination of important but unsolved problems, and the directions in which molecular and cell biology are moving. Though designed primarily to meet the needs of the first-year medical student, particularly in schools where the traditional curriculum has been partly or wholly replaced by a multi-disciplinary core curriculum, the mass of information made available here should prove useful to students of biochemistry, physiology, biology, bioengineering, dentistry, and nursing. It is not yet possible to give a complete account of the relations between the organelles of two compartments and of the mechanisms by which some degree of order is maintained in the cell as a whole. However, a new breed of scientists, known as molecular cell biologists, have already contributed in some measure to our understanding of several biological phenomena notably interorganelle communication. Take, for example, intracellular membrane transport: it can now be expressed in terms of the sorting, targeting, and transport of protein from the endoplasmic reticulum to another compartment. This volume contains the first ten chapters on the subject of organelles. The remaining four are in Volume 3, to which sections on organelle disorders and the extracellular matrix have been added.
We have surpassed the omics era and are truly in the Age of Molecular Therapeutics. The fast-paced development of SARS-CoV-2 vaccines, such as the mRNA vaccines encoding the viral spike protein, demonstrated the need for and capability of molecular therapy and nanotechnology-based solutions for drug delivery. In record speed, the SARS-CoV-2 viral RNA genome was sequenced and shared with the scientific community, allowing the rapid design of molecular therapeutics. The mRNA vaccines exploit the host cell endoplasmic reticulum to produce viral spike proteins for antigen presentation and recognition by the innate and adaptive immune system. Lipid nanoparticles enable the delivery of the fragile, degradation-sensitive nucleic acid payloads. Molecular-based therapeutics and nanotechnology solutions continue to drive the scientific and medical response to the COVID-19 pandemic as new mRNA, DNA, and protein-based vaccines are developed and approved and the emergency use approved vaccines are rapidly manufactured and distributed throughout the globe. The need for molecular therapies and drug delivery solutions is clear, and as these therapies progress and become more specialized there will be important advancements in organelle targeting. For example, using organelle targeting to direct lipid nanoparticles with mRNA payloads to the endoplasmic reticulum would increase the efficacy of mRNA vaccines, reducing the required dose and therefore the biomanufacturing demand. Likewise, improving the delivery of DNA therapeutics to the nucleus would improve efficacy. Organelles and molecules have always been drug targets, but until recently we have not had the tools or capability to design and develop such highly specific therapeutics. Organelle targeting has far-reaching implications. For example, mitochondria are central to both energy production and intrinsic apoptosis. Effectively targeting and manipulating mitochondria has therapeutic applications for diseases such as myopathies, cancer, neurodegeneration, progerias, diabetes, and the natural aging process. The SARS-CoV-2 vaccines that exploit the endoplasmic reticulum (for mRNA vaccines) and the nucleic translational process (DNA vaccines) attest to the need for organelle and molecular therapeutics. This book covers the status, demand, and future of organelle- and molecularly targeted therapeutics that are critical to the advancement of modern medicine. Organelle and molecular targeting is the drug design and drug delivery approach of today and the future; understanding this approach is essential for students, scientists, and clinicians contributing to modern medicine.
The much-anticipated 3rd edition of Cell Biology delivers comprehensive, clearly written, and richly illustrated content to today’s students, all in a user-friendly format. Relevant to both research and clinical practice, this rich resource covers key principles of cellular function and uses them to explain how molecular defects lead to cellular dysfunction and cause human disease. Concise text and visually amazing graphics simplify complex information and help readers make the most of their study time. Clearly written format incorporates rich illustrations, diagrams, and charts. Uses real examples to illustrate key cell biology concepts. Includes beneficial cell physiology coverage. Clinically oriented text relates cell biology to pathophysiology and medicine. Takes a mechanistic approach to molecular processes. Major new didactic chapter flow leads with the latest on genome organization, gene expression and RNA processing. Boasts exciting new content including the evolutionary origin of eukaryotes, super resolution fluorescence microscopy, cryo-electron microscopy, gene editing by CRISPR/Cas9, contributions of high throughput DNA sequencing to understand genome organization and gene expression, microRNAs, IncRNAs, membrane-shaping proteins, organelle-organelle contact sites, microbiota, autophagy, ERAD, motor protein mechanisms, stem cells, and cell cycle regulation. Features specially expanded coverage of genome sequencing and regulation, endocytosis, cancer genomics, the cytoskeleton, DNA damage response, necroptosis, and RNA processing. Includes hundreds of new and updated diagrams and micrographs, plus fifty new protein and RNA structures to explain molecular mechanisms in unprecedented detail.
All hollow organs, such as blood vessels, the gastrointestinal tract, airways, male and female reproductive systems, and the urinary bladder are primarily composed of smooth muscle. Such organs regulate flow, propulsion and mixing of luminal contents and storage by the contraction and relaxation of smooth muscle cells. Smooth muscle cells respond to numerous inputs, including pressure, shear stress, intrinsic and extrinsic innervation, hormones and other circulating molecules, as well as autocrine and paracrine factors. This book is a review of smooth muscle cell regulation in the cardiovascular, reproductive, GI, and other organ systems with emphasis on calcium and receptor signaling. Key selling features: Focuses on smooth muscles of different types Describes ion channel signaling mechanisms Reviews calcium and receptor signaling Includes novel, cutting-edge methodologies Summarizes studies of mice with genetically encoding sensors in smooth muscle Chapter 9 of this book is freely available as a downloadable Open Access PDF under a CC-BY 4.0 license. https://s3-us-west-2.amazonaws.com/tandfbis/rt-files/docs/Open+Access+Chapters/9781498774222_oachapter9.pdf
Endocytosis is a fundamental biological process, which is conserved among all eukaryotes. It is essential not only for many physiological and signalling processes but also for interactions between eukaryotic cells and pathogens or symbionts. This book covers all aspects of endocytosis in both lower and higher plants, including basic types of endocytosis, endocytic compartments, and molecules involved in endocytic internalization and recycling in diverse plant cell types. It provides a comparison with endocytosis in animals and yeast and discusses future prospects in this new and rapidly evolving plant research field. Readers will find an overview of the state-of-the-art methods and techniques applied in plant endocytosis research.