Download Free Ordered Porous Solids Book in PDF and EPUB Free Download. You can read online Ordered Porous Solids and write the review.

The developments in the area of ordered nanoporous solids have moved beyond the traditional catalytic and separation uses and given rise to a wide variety of new applications in different branches of chemistry, physics, material science, etc. The activity in this area is due to the outstanding properties of nanoporous materials that have attracted the attention of researchers from different communities. However, recent achievements in a specific field often remain out of the focus of collaborating communities. This work summarizes the latest developments and prospects in the area of ordered porous solids, including synthetic layered materials (clays), microporous zeolite-type materials, ordered mesoporous solids, metal-organic-framework compounds (MOFs), carbon, etc. All aspects, from synthesis via comprehensive characterization to the advanced applications of ordered porous materials, are presented. The chapters are written by leading experts in their respective fields with an emphasis on recent progress and the state of the art. Summarizes the latest developments in the field of ordered nanoporous solids Presents state-of-the-art coverage of applications related to porous solids Incorporates 28 contributions from experts across the disciplines
Reviews the most interesting materials on the market concerning self-ordering, including macroporous silicon, porous alumina, MCM41 and photonic bandgap.
The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals
Mesoporous materials are a class of molecules with a large and uniform pore size, highly regular nanopores, and a large surface area. This book is devoted to all aspects and types of these materials and describes, in an in-depth and systematic manner, the step-by-step synthesis and its mechanism, as well as the characterization, morphology control, hybridization, and applications, of mesoporous molecular sieves. In so doing, it covers silicates, metal-doped silicates, nonsilicates, and organic-inorganic hybrids. Although the emphasis is on synthesis, the expert authors also discuss characterization and applications, ranging from catalysis and biochemistry to optics and the use of these materials as templates for nanomaterial synthesis. Both the fundamentals and the latest research results are covered, ensuring that this monograph serves as a reference for researchers in and newcomers to the field.
Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.
This unique book is the Proceedings of the 8th International Symposium on the Characterisation of Porous Solids, known also as "COPS VIII". The conference is one of a series, held every three years, which covers developments in methods for the characterisation of porous materials, and applications of those methods. The scope of the conference: COPS VIII is concerned with fundamental and applied research on the characterisation of the structure of porous materials, and the relationship between structure and material performance. The scope includes experimental characterisation methods such as X-Ray diffraction, NMR, adsorption, mercury intrusion, and calorimetry; theoretical and simulation methods used to interpret experimental data, such as molecular simulation, classical and statistical mechanical theory, and pore network modelling; and applied research on the impact of measured material properties on performance in applications.
The importance of porosity has long been recognized by scientists and engineers. Porous solids are widely encountered in industry and everyday life and their behaviour, e.g. chemical reactivity, adsorptive capacity, and catalytic activity is dependent on their pore structure. A considerable amount of work on porous solids has been undertaken both in academic and in industrial laboratories. However, all this activity is in urgent need of a critical appraisal. To undertake this task, a number of leading experts in the field of adsorption, porosimetry, X-ray and neutron scattering, optical and electron microscopy, calorimetry and fluid permeation, were brought together at the 1987 IUPAC (COPS I) Symposium.This proceedings volume provides an up-to-date overall review of the theoretical foundations for modelling and characterizing porous systems. It deals with most of the techniques in current use as applied to both model systems and porous solids of industrial importance. The reader will find the description and discussion of a number of novel techniques as well as a critical appraisal and comparison of the more established methods. All those concerned with the characterization of porous solids in academic and industrial laboratories will find much to interest them in this volume. It should be on the bookshelf of applied research centres involved in adsorption, catalysis, purification of gases and liquids, pigments, fillers, building materials, etc.
In the past few decades, the increasingly routine use of advanced structural probes for studying the structure and dynamics of the solid state has led to some dramatic developments in the field of porous solids. These materials are fundamental in a diverse range of applications, such as shape-selective catalysts for energy-efficient organic transformations, new media for pollutant removal, and gas storage materials for energy technologies. Porosity in inorganic materials may range from the nano-scale to the macro-scale, and the drive towards particular properties remains the goal in this fast-developing area of research. Covering some of the key families of inorganic solids that are currently being studied, Porous Materials discusses: Metal Organic Frameworks Materials Mesoporous Silicates Ordered Porous Crystalline Transition Metal Oxides Recent Developments in Templated Porous Carbon Materials Synthetic Silicate Zeolites: Diverse Materials Accessible Through Geoinspiration Additional volumes in the Inorganic Materials Series: Low-Dimensional Solids | Molecular Materials | Functional Oxides | Energy Materials
This book contains 99 of the papers that were presented at the 6th in the series of Symposia on Characterization of Porous Solids held in Alicante, Spain, May 2002. Written by leading international specialists in the subject, the contributions represent an up-to-date and authoritative account of recent developments around the world in the major methods used to characterize porous solids. The book is a useful work of reference for anyone interested in characterizing porous solids, such as MCM-41 mesoporous materials, pillared clays, etc. Papers on pore structure determination using gas adsorption feature strongly, together with papers on small angle scattering methods, mercury porosimetry, microcalorimetry, scanning probe microscopies, and image analysis.