Download Free Orbitals With Applications In Atomic Spectra Revised Edition Book in PDF and EPUB Free Download. You can read online Orbitals With Applications In Atomic Spectra Revised Edition and write the review.

'Without being an explicitly philosophical treatise Chas McCaw's book delves into some of the deepest and most difficult aspects of atomic physics and chemistry and its underlying quantum mechanical account … One of the many strengths of the book under review is that it takes a rigorous and unflinching look at the necessary mathematical details. In addition, the author, who is the Head of Science at Winchester College in the UK, provides as many as 107 exercises which are interspersed throughout the main text. The detailed solutions are given at the end of the book, over a sequence of about 50 pages.'Foundations of ChemistryOrbitals: With Applications in Atomic Spectra describes atomic orbitals at a level suitable for undergraduates in chemistry. The mathematical treatment is brought to life by many illustrations rendered from mathematical functions (no artists' impressions), including three-dimensional plots of angular functions, showing orbital phase, and contour plots of the wavefunctions that result from orbital hybridisation.This revised edition includes new discussion of the origins of the colour of gold and the 'accidental degeneracy' of the hydrogen atom subshells, a new figure, a new exercise and worked solution, as well as several new references. It also contains current and accurate updates to the old edition.Orbitals extends the key fundamental quantum properties to many-electron atoms, linear combinations of atomic orbitals, simple molecules, delocalised systems and atomic spectroscopy. By focusing on simple model systems, use of analogies and avoiding group theory, results are obtained from initial postulates without the need for sophisticated mathematics. The book explains topics from first principles and guides the reader carefully through the necessary mathematics, supplemented by worked solutions to problems.
This book describes atomic orbitals at a level suitable for undergraduates in chemistry. The mathematical treatment is brought to life by many illustrations rendered from mathematical functions (no artists' impressions), including three-dimensional plots of angular functions, showing orbital phase, and contour plots of the wavefunctions that result from orbital hybridisation.Orbitals extends the key fundamental quantum properties to many-electron atoms, linear combinations of atomic orbitals, simple molecules, delocalised systems and atomic spectroscopy. By focusing on simple model systems, use of analogies and avoiding group theory the results are obtained from initial postulates without the need for sophisticated mathematics.
Both the interpretation of atomic spectra and the application of atomic spectroscopy to current problems in astrophysics, laser physics, and thermonuclear plasmas require a thorough knowledge of the Slater-Condon theory of atomic structure and spectra. This book gathers together aspects of the theory that are widely scattered in the literature and augments them to produce a coherent set of closed-form equations suitable both for computer calculations on cases of arbitrary complexity and for hand calculations for very simple cases.
This Comprehensive Text Clearly Explains Quantum Theory, Wave Mechanics, Structure Of Atoms And Molecules And Spectroscopy.The Book Is In Three Parts, Namely, Wave Mechanics; Structure Of Atoms And Molecules; And Spectroscopy And Resonance Techniques.In A Simple And Systematic Manner, The Book Explains The Quantum Mechanical Approach To Structure, Along With The Basic Principles And Application Of Spectroscopic Methods For Molecular Structure Determination.The Book Also Incorporates The Electric And Magnetic Properties Of Matter, The Symmetry, Group Theory And Its Applications.Each Chapter Includes Many Solved Examples And Problems For A Better Understanding Of The Subject.With Its Exhaustive Coverage And Systematic Approach, This Is An Invaluable Text For B.Sc. (Hons.) And M.Sc. Chemistry Students.
Symmetry is at the heart of our understanding of matter. This book tells the fascinating story of the constituents of matter from a common symmetry perspective. The standard model of elementary particles and the periodic table of chemical elements have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of Shattered Symmetry is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. Along the way the theory of symmetry groups is gradually introduced with special emphasis on its use as a classification tool and its graphical representations. This is applied to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires us to leave the common ground of linear algebras and explore the potential of non-linearity.
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra describes the applications of group theoretical methods to problems of quantum mechanics with particular reference to atomic spectra. The manuscript first takes a look at vectors and matrices, generalizations, and principal axis transformation. Topics include principal axis transformation for unitary and Hermitian matrices; unitary matrices and the scalar product; linear independence of vectors; and real orthogonal and symmetric matrices. The publication also ponders on the elements of quantum mechanics, perturbation theory, and transformation theory and the bases for the statistical interpretation of quantum mechanics. The book discusses abstract group theory and invariant subgroups, including theorems of finite groups, factor group, and isomorphism and homomorphism. The text also reviews the algebra of representation theory, rotation groups, three-dimensional pure rotation group, and characteristics of atomic spectra. Discussions focus on eigenvalues and quantum numbers, spherical harmonics, and representations of the unitary group. The manuscript is a valuable reference for readers interested in the applications of group theoretical methods.
Spectra of Atoms and Molecules, 2nd Edition is designed to introduce advanced undergraduates and new graduate students to the vast field of spectroscopy. Of interest to chemists, physicists, astronomers, atmospheric scientists, and engineers, it emphasizes the fundamental principles of spectroscopy with its primary goal being to teach students how to interpret spectra. The book includes a clear presentation of group theory needed for understanding the material and a large number of excellent problems are found at the end of each chapter. In keeping with the visual aspects of the course, the author provides a large number of diagrams and spectra specifically recorded for this book. Topics such as molecular symmetry, matrix representation of groups, quantum mechanics, and group theory are discussed. Analyses are made of atomic, rotational, vibrational, and electronic spectra. Spectra of Atoms and Molecules, 2nd Edition has been updated to include the 1998 revision of physical constants, and conforms more closely to the recommended practice for the use of symbols and units. This new edition has also added material pertaining to line intensities, which can be confusing due to the dozens of different units used to report line and band strengths. Another major change is in author Peter Bernath's discussion of the Raman effect and light scattering, where the standard theoretical treatment is now included. Aimed at new students of spectroscopy regardless of their background, Spectra of Atoms and Molecules will help demystify spectroscopy by showing the necessary steps in a derivation.
Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.