Download Free Orbitals In Chemistry Book in PDF and EPUB Free Download. You can read online Orbitals In Chemistry and write the review.

This text presents a unified and up-to-date discussion of the role of atomic and molecular orbitals in chemistry, from the quantum mechanical foundations to the recent developments and applications. The discussion is mainly qualitative, largely based on symmetry arguments. It is felt that a sound mastering of the concepts and qualitative interpretations is needed, especially when students are becoming more and more familiar with numerical calculations based on atomic and molecular orbitals. The text is mathematically less demanding than most traditional quantum chemistry books but still retains clarity and rigour. The physical insight is maximized and abundant illustrations are used. The relationships between the more formal quantum mechanical formalisms and the traditional chemical descriptions of chemical bonding are critically established. This book is of primary interest to undergraduate chemistry students and others taking courses of which chemistry is a significant part.
This book explores chemical bonds, their intrinsic energies, and the corresponding dissociation energies which are relevant in reactivity problems. It offers the first book on conceptual quantum chemistry, a key area for understanding chemical principles and predicting chemical properties. It presents NBO mathematical algorithms embedded in a well-tested and widely used computer program (currently, NBO 5.9). While encouraging a "look under the hood" (Appendix A), this book mainly enables students to gain proficiency in using the NBO program to re-express complex wavefunctions in terms of intuitive chemical concepts and orbital imagery.
Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.
'Without being an explicitly philosophical treatise Chas McCaw's book delves into some of the deepest and most difficult aspects of atomic physics and chemistry and its underlying quantum mechanical account … One of the many strengths of the book under review is that it takes a rigorous and unflinching look at the necessary mathematical details. In addition, the author, who is the Head of Science at Winchester College in the UK, provides as many as 107 exercises which are interspersed throughout the main text. The detailed solutions are given at the end of the book, over a sequence of about 50 pages.'Foundations of ChemistryOrbitals: With Applications in Atomic Spectra describes atomic orbitals at a level suitable for undergraduates in chemistry. The mathematical treatment is brought to life by many illustrations rendered from mathematical functions (no artists' impressions), including three-dimensional plots of angular functions, showing orbital phase, and contour plots of the wavefunctions that result from orbital hybridisation.This revised edition includes new discussion of the origins of the colour of gold and the 'accidental degeneracy' of the hydrogen atom subshells, a new figure, a new exercise and worked solution, as well as several new references. It also contains current and accurate updates to the old edition.Orbitals extends the key fundamental quantum properties to many-electron atoms, linear combinations of atomic orbitals, simple molecules, delocalised systems and atomic spectroscopy. By focusing on simple model systems, use of analogies and avoiding group theory, results are obtained from initial postulates without the need for sophisticated mathematics. The book explains topics from first principles and guides the reader carefully through the necessary mathematics, supplemented by worked solutions to problems.
This book was undertaken for the purpose of bringing together the widely diverse lines of experimental work and thinking which has been expressed but has often been unheard on the title question. It will be clear to the reader that a critical viewpoint has been maintained in assembling the material of this rapidly expanding area of concern to organic chemists. It should be clear, too, that the authors are not purvey ing a singular viewpoint and do not regard the discussions presented as the ultimate word on the subject. In fact, it should be anticipated that many ofthe viewpoints pre sented may have to be altered in the light of new developments. In recognition of this and to show the wayan appendix of recent results and interpretation has been included where an alteration in viewpoint on some of the material treated in the text has been necessitated by developments in the most recent literature. This ap pendix should be regarded as the reader's opportunity to maintain currency in all aspects of this subject ifit is kept abreast of the literature. The bibliography, from which most of the material of discussion has been drawn, is organized in a somewhat unusual manner which deserves some explana tion here. A reference citation can consist of (as much as) a six space combination of letters and numerals.
Winner of the PROSE Award for Chemistry & Physics 2010 Acknowledging the very best in professional and scholarly publishing, the annual PROSE Awards recognise publishers' and authors' commitment to pioneering works of research and for contributing to the conception, production, and design of landmark works in their fields. Judged by peer publishers, librarians, and medical professionals, Wiley are pleased to congratulate Professor Ian Fleming, winner of the PROSE Award in Chemistry and Physics for Molecular Orbitals and Organic Chemical Reactions. Molecular orbital theory is used by chemists to describe the arrangement of electrons in chemical structures. It is also a theory capable of giving some insight into the forces involved in the making and breaking of chemical bonds—the chemical reactions that are often the focus of an organic chemist's interest. Organic chemists with a serious interest in understanding and explaining their work usually express their ideas in molecular orbital terms, so much so that it is now an essential component of every organic chemist's skills to have some acquaintance with molecular orbital theory. Molecular Orbitals and Organic Chemical Reactions is both a simplified account of molecular orbital theory and a review of its applications in organic chemistry; it provides a basic introduction to the subject and a wealth of illustrative examples. In this book molecular orbital theory is presented in a much simplified, and entirely non-mathematical language, accessible to every organic chemist, whether student or research worker, whether mathematically competent or not. Topics covered include: Molecular Orbital Theory Molecular Orbitals and the Structures of Organic Molecules Chemical Reactions — How Far and How Fast Ionic Reactions — Reactivity Ionic Reactions — Stereochemistry Pericyclic Reactions Radical Reactions Photochemical Reactions Slides for lectures and presentations are available on the supplementary website: www.wiley.com/go/fleming_student Molecular Orbitals and Organic Chemical Reactions: Student Edition is an invaluable first textbook on this important subject for students of organic, physical organic and computational chemistry. The Reference Edition edition takes the content and the same non-mathematical approach of the Student Edition, and adds extensive extra subject coverage, detail and over 1500 references. The additional material adds a deeper understanding of the models used, and includes a broader range of applications and case studies. Providing a complete in-depth reference for a more advanced audience, this edition will find a place on the bookshelves of researchers and advanced students of organic, physical organic and computational chemistry. Further information can be viewed here. "These books are the result of years of work, which began as an attempt to write a second edition of my 1976 book Frontier Orbitals and Organic Chemical Reactions. I wanted to give a rather more thorough introduction to molecular orbitals, while maintaining my focus on the organic chemist who did not want a mathematical account, but still wanted to understand organic chemistry at a physical level. I'm delighted to win this prize, and hope a new generation of chemists will benefit from these books." -Professor Ian Fleming
Chemistry 2e is designed to meet the scope and sequence requirements of the two-semester general chemistry course. The textbook provides an important opportunity for students to learn the core concepts of chemistry and understand how those concepts apply to their lives and the world around them. The book also includes a number of innovative features, including interactive exercises and real-world applications, designed to enhance student learning. The second edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Substantial improvements have been made in the figures, illustrations, and example exercises that support the text narrative. Changes made in Chemistry 2e are described in the preface to help instructors transition to the second edition.
The Organic Chemist's Book of Orbitals focuses on the mechanisms, stereochemistry, and reactivity of molecular orbitals. Composed of four chapters, the book outlines how molecular orbitals are created by delocalization. Concerns include CC and CH single-bond orbitals; bond orbitals and group orbitals; and the localized orbitals of CH2 and CH3 groups. Schematic diagrams are presented to show the nature, reactions, and compositions of molecular orbitals. The text offers a list of molecules and orbital occupancies. Orbital drawings are presented to show the differences of the molecular orbitals of hydrogen, water, ammonia, methane, nitrogen, carbon monoxide, and acetylene. The book also provides an index of references for the molecular geometries and orbital energies employed in the orbital drawings. Considering the weight of data presented, the book is a great find for readers interested in studying molecular orbitals.
See Table of Contents (PMP)
Provides a basic introduction to frontier orbital theory with a review of its applications in organic chemistry. Assuming the reader is familiar with the concept of molecular orbital as a linear combination of atomic orbitals the book is presented in a simple style, without mathematics making it accessible to readers of all levels.