Download Free Optofluidics Book in PDF and EPUB Free Download. You can read online Optofluidics and write the review.

This introduction into the multidisciplinary area of optofluidics offers the necessary foundations in photonics, polymer physics and process analytics to students, engineers and researchers to enter the field. All basic ingredients of a polymer-based platform as a foundation for quick and compact solutions for chemical, biological and medical sensing and manipulation are developed.
This book is a printed edition of the Special Issue "Advances in Optofluidics" that was published in Micromachines
Optofluidics is an emerging field that involves the use of fluids to modify optical properties and the use of optical devices to detect flowing media. Ultimately, its value is highly dependent on the successful integration of photonic integrated circuits with microfluidic or nanofluidic systems. Handbook of Optofluidics provides a snapshot of the s
This book is a printed edition of the Special Issue "Optofluidics 2015" that was published in Micromachines
At the cross-roads of biology, microfluidics and photonics the field of optofluidics allows for quick and compact solutions for medical and biochemical sensing and manipulation. This book is concerned with the ingredients for a polymer-based platform which is able to culture and pattern life cells for a sufficient period of time, enables the integration of photonic devices, and provides means to integrate electronic readout. Thus – in its cross-discipline approach – it touches on aspects of photonics, nanofabrication, and biological methods alike.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Cutting-Edge Optofluidics Theories, Techniques, and Practices Add novel functionalities to your optical design projects by incorporating state-of-the-art microfluidic technologies and tools. Co-written by industry experts, Optofluidics: Fundamentals, Devices, and Applications covers the latest functional integration of optical devices and microfluidics, as well as automation techniques. This authoritative guide explains how to fabricate optical lab-on-a-chip devices, synthesize photonic crystals, develop solid and liquid core waveguides, use fluidic self-assembly methods, and accomplish direct microfabrication in solutions. The book includes details on developing biological sensors and arrays, handling maskless lithography, designing high-Q cavities, and working with nanoscale plasmonics. Research outcomes from the DARPA-funded Center for Optofluidics Integration are also discussed. Discover how to: Work with optofluidic sources, lenses, filters, switches, and splitters Use dielectric waveguiding devices to input, move, and manipulate fluids Integrate colloidal crystals and fibers with microfluidic systems Develop bio-inspired fluidic lens systems and aspherical lenses Deploy miniaturized dye lasers, microscopes, biosensors, and resonators Analyze microfluidic systems using flow injection and fluorescent spectroscopy Build optofluidic direct fabrication platforms for innovative microstructures Accomplish optofluidic liquid actuation and particle manipulation
Optofluidic devices are of high scientific and industrial interest in chemistry, biology, material science, pharmacy, and medicine. In recent years, they have experienced strong development because of impressive achievements in the synergistic combination of photonics and micro/nanofluidics. Sensing and/or lasing platforms showing unprecedented sensitivities in extremely small analyte volumes, and allowing real-time analysis within a lab-on-a-chip approach, have been developed. They are based on the interaction of fluids with evanescent waves induced at the surface of metallic or photonic structures, on the implementation of microcavities to induce optical resonances in the fluid medium, or on other interactions of the microfluidic systems with light. In this context, a large variety of optofluidic devices has emerged, covering topics such as cell manipulation, microfabrication, water purification, energy production, catalytic reactions, microparticle sorting, micro-imaging, or bio-sensing. Moreover, the integration of these optofluidic devices in larger electro-optic platforms represents a highly valuable improvement towards advanced applications, such as those based on surface plasmon resonances that are already on the market. In this Special Issue, we invited the scientific community working in this rapidly evolving field to publish recent research and/or review papers on these optofluidic devices and their applications.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
This book is a printed edition of the Special Issue "Insights and Advancements in Microfluidics" that was published in Micromachines
Nanosensors for Smart Cities covers the fundamental design concepts and emerging applications of nanosensors for the creation of smart city infrastructures. Examples of major applications include logistics management, where nanosensors could be used in active transport tracking devices for smart tracking and tracing, and in agri-food productions, where nanosensors are used in nanochips for identity, and food inspection, and smart storage. This book is essential reading for researchers working in the field of advanced sensors technology, smart city technology and nanotechnology, and stakeholders involved in city management. Nanomaterials based sensors (nanosensors) can offer many advantages over their microcounterparts, including lower power consumption, high sensitivity, lower concentration of analytes, and smaller interaction distance between object and sensor. With the support of artificial intelligence (AI) tools, such as fuzzy logic, genetic algorithms, neural networks, and ambient-intelligence, sensor systems are becoming smarter. - Provides information on the fabrication and fundamental design concepts of nanosensors for intelligent systems - Explores how nanosensors are being used to better monitor and maintain infrastructure services, including street lighting, traffic management and pollution control - Assesses the challenges for creating nanomaterials-enhanced sensors for mass-market consumer products