Download Free Optoelectronic Materials And Technology In The Information Age Book in PDF and EPUB Free Download. You can read online Optoelectronic Materials And Technology In The Information Age and write the review.

This volume will provide interdisciplinary treatment, with a strong materials community, for technical exchange on optoelecronic materials, device application, and system development. Proceedings of the symposium at the 103rd Annual Meeting of The American Ceramic Society, held April 22-25, 2001 in Indianapolis, Indiana; Ceramic Transactions, Volume 126.
Milton Ohring's Engineering Materials Science integrates the scientific nature and modern applications of all classes of engineering materials. This comprehensive, introductory textbook will provide undergraduate engineering students with the fundamental background needed to understand the science of structure-property relationships, as well as address the engineering concerns of materials selection in design, processing materials into useful products, andhow material degrade and fail in service. Specific topics include: physical and electronic structure; thermodynamics and kinetics; processing; mechanical, electrical, magnetic, and optical properties; degradation; and failure and reliability. The book offers superior coverage of electrical, optical, and magnetic materials than competing text.The author has taught introductory courses in material science and engineering both in academia and industry (AT&T Bell Laboratories) and has also written the well-received book, The Material Science of Thin Films (Academic Press).Key Features* Provides a modern treatment of materials exposing the interrelated themes of structure, properties, processing, and performance* Includes an interactive, computationally oriented, computer disk containing nine modules dealing with structure, phase diagrams, diffusion, and mechanical and electronic properties* Fundamentals are stressed* Of particular interest to students, researchers, and professionals in the field of electronic engineering
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
This landmark work – considered by many in the field to be THE reference on fiber-optic gyroscopes (FOGs) – provides you with a complete and thorough system analysis of the FOG and remains unmatched by any other single source. Now in its third edition, this fully updated and authoritative book: Gives you access to all the details you need to know about optics, single-mode fiber optics, and integrated optics to fully grasp the design rules of the fiber-optic gyroscope Helps you understand the concepts that have emerged as the preferred solutions to obtain a practical device Guides you through the advances that have occurred in the last seven years since the previous edition was published and how they are implemented in the current FOGs Drawing on 45 years of research and development, The Fiber-Optic Gyroscope, Third Edition, features new content on the relationship between white-noise power spectral density and random walk; Allan variance; testing with optical coherence domain polarimetry; a new simple mechanical model of the thermally induced stresses and related strains in the sensing coil; simple viewing of the reduction of the Shupe effect with symmetrical windings; and comments about dispersion and birefringence dispersion. The book contains over 350 illustrations (including 70 new figures) and many helpful appendixes, and gives you everything you need to understand the fiber gyro. The author is a leading expert in this field and is one of the early pioneers of the practical optical architecture and signal processing technique that is universally used in today’s FOGs. This is a must-have reference for anyone working with FOGs, from students and academics learning about the device, to optoelectronics engineers and professionals needing to stay abreast of the current concepts and recent advances.
Photonic structures occurring in biological tissues such as butterfly wings, beetle elytra or fish scales are responsible for a broad range of optical effects including iridescence, narrow-band reflection, large solid-angle scattering, polarization effects, additive color mixing, fluid-induced color changes, controlled fluorescence. Studies have provided understanding of the underlying optical mechanisms and the biological functions as well as inspiration for the design and development of novel photonic devices, also called bioinspiration. In this forward-thinking book, the research related to photonic structures in natural organisms is reviewed with a main foPhotonic structures occurring in biological tissues such as butterfly wings, beetle elytra, or fish scales are responsible for a broad range of optical effects including iridescence, narrow band reflection, large solid-angle scattering, polarization, additive color mixing, fluid induced color changes, and controlled fluorescence. This book reviews research of biological photonic devices in accordance with the fundamental aspects of physical optics and environmental biology. It provides readers with an understanding of numerical modelling based on morphological and optical characterizations as well as the quantitative treatment of color vision. This forward-thinking book ties these concepts to the design and synthesis of bioinspired photonic devices and opens the door to the applications of nature’s lessons in the technical world. This resource introduces a methodology for working with and utilizing bioinspiration. It includes the experimental and numerical tools necessary for the characterization and simulation of photonic structures and uses original concepts as examples, with a focus on bioinspired hygrochromatic materials. Professionals are brought up to speed on a variety of fabrication techniques and methods of synthesis all following a straightforward bottom-up or top-down approach. The reader will gain an understanding of the capability of bioinspiration to meet human needs. This book’s explanation of how natural photonics structures behave as efficient solar absorbers or thermal management devices makes it a useful resource for technical professionals in the field of energy and environment, and the concepts presented in this book also have applications in the designs of optical coatings, sensors, and light sources.
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.
This book presents today's most powerful signal processing techniques together with methods for assessing imaging system performance when each of these techniques is applied. This multi-use book helps you make the most of sensor hardware through software enhancement, and evaluate system and algorithm performance. You also learn how to make the best hardware/software decisions in developing the next-generation of image acquisition and analysis systems.