Download Free Optimum Design And Control Of A Hybrid Hydraulic Pneumatic Active Car Suspension System Book in PDF and EPUB Free Download. You can read online Optimum Design And Control Of A Hybrid Hydraulic Pneumatic Active Car Suspension System and write the review.

This book describes the procedures of developing an adaptive suspension system with examples. This book gives a thorough introduction to air suspension systems, which contain height leveling systems, electronic control systems, design fundamentals, performance superiority, etc. This book encompasses all essential aspects of suspension systems and provides an easy approach to their understanding and design. Provides a step-by-step approach using pictures, graphs, tables, and examples so that the reader may easily grasp difficult concepts. This book defines and examines suspension mechanisms and their geometrical features. Suspension motions and ride models are derived for the study of vehicle ride comfort. Analysis of suspension design factors and component sizing along with air suspension systems and their functionalities are reviewed.
Research Paper (undergraduate) from the year 2020 in the subject Computer Science - Miscellaneous, , language: English, abstract: This paper offers with the theoretical and computational evaluation of optimal & robust control problems, with the goal of providing answers to them with MATLAB simulation. For the robust control, μ-synthesis controller and for the optimal control, LQR controller are designed for a quarter car active suspension system to maximize the ride comfort and road handling criteria’s of the vehicle. The proposed controllers are designed using Matlab script program using time domain analysis for the four road disturbances (bump, random sine pavement and white noise) for the control targets suspension deflection, body acceleration and body travel. Finally the simulation result prove the effectiveness of the active suspension system with μ-synthesis controller.
Semi-Active Suspension Control Design for Vehicles presents a comprehensive discussion of designing control algorithms for semi-active suspensions. It also covers performance analysis and control design. The book evaluates approaches to different control theories, and it includes methods needed for analyzing and evaluating suspension performances, while identifying optimal performance bounds. The structure of the book follows a classical path of control-system design; it discusses the actuator or the variable-damping shock absorber, models and technologies. It also models and discusses the vehicle that is equipped with semi-active dampers, and the control algorithms. The text can be viewed at three different levels: tutorial for novices and students; application-oriented for engineers and practitioners; and methodology-oriented for researchers. The book is divided into two parts. The first part includes chapters 2 to 6, in which fundamentals of modeling and semi-active control design are discussed. The second part includes chapters 6 to 8, which cover research-oriented solutions and case studies. The text is a comprehensive reference book for research engineers working on ground vehicle systems; automotive and design engineers working on suspension systems; control engineers; and graduate students in control theory and ground vehicle systems. - Appropriate as a tutorial for students in automotive systems, an application-oriented reference for engineers, and a control design-oriented text for researchers that introduces semi-active suspension theory and practice - Includes explanations of two innovative semi-active suspension strategies to enhance either comfort or road-holding performance, with complete analyses of both - Also features a case study showing complete implementation of all the presented strategies and summary descriptions of classical control algorithms for controlled dampers
Master's Thesis from the year 2020 in the subject Engineering - Automotive Engineering, Jimma University College of Agriculture and Veterinary Medicine, language: English, abstract: To improve the road handling and passenger comfort of a vehicle, a suspension system is provided. An active suspension system is considered to be better than the passive suspension system. In this thesis, 2 degrees of freedom of a linear quarter car active suspension system is designed, which is subject to different disturbances on the road. Since the parametric uncertainty in the spring, the shock absorber, mass and the actuator has been considered, robust control is used. In this thesis, H∞ and μ− synthesis controllers are used to improve the driving comfort and the ability to drive the car on the road. For the analysis of the time domain, using a MATLAB script program and performed a test using four disturbance inputs of the road (bump, random, sinusoidal and harmonic) for the suspension deflection, the acceleration of the body and the body travel for the active suspension with the H∞ controller and active suspension with μ− synthesis controller and the comparative simulation and reference results demonstrate the effectiveness of the presented active suspension system with μ− synthesis controller. In addition, in this thesis, comparison have been made between the active suspension system with μ−synthesis controller and 5 different robust controller for suspension deflection, body acceleration and body travel tests using bump, random, sinusoidal pavements and harmonic road disturbances. Body accelerations comparison of the active suspension system with μ−synthesis controller with VW (Volkswagen) Passat B5 passenger car is done for a bump road input disturbance and the result shows that there is a 50% reduction in body acceleration for the active suspension system with μ− synthesis controller.
Semi-active Suspension Control provides an overview of vehicle ride control employing smart semi-active damping systems. These systems are able to tune the amount of damping in response to measured vehicle-ride and handling indicators. Two physically different dampers (magnetorheological and controlled-friction) are analysed from the perspectives of mechatronics and control. Ride comfort, road holding, road damage and human-body modelling are studied. Mathematical modelling is balanced by a large and detailed section on experimental implementation, where a variety of automotive applications are described offering a well-rounded view. The implementation of control algorithms with regard to real-life engineering constraints is emphasised. The applications described include semi-active suspensions for a saloon car, seat suspensions for vehicles not equipped with a primary suspension, and control of heavy-vehicle dynamic-tyre loads to reduce road damage and improve handling.
Hydropneumatic suspension systems combine the excellent properties of gas springs with the favourable damping properties of hydraulic fluids. The advantages of these systems are particularly appropriate for mobile applications, such as agricultural and construction equipment as well as passenger cars, trucks and busses. Based on his 20 years of experience with this technology, Dr. Bauer provides in this book an extensive overview of hydropneumatic suspension systems. Starting with a comparison of different types of suspension systems, the author subsequently describes the theoretical background associated with spring and damping characteristics of hydropneumatic systems. Furthermore, he explains the design of the most important system components and gives an overview of level control systems, various special functions, patents and design examples. Finally, an outlook for future hydropneumatic suspension systems is discussed. Compared to the first edition, this new edition puts an additional focus on damping functions as well as applications / projects and contains various additional details such as proportional valves, all-wheel suspension or dediated power supply. Furthermore, suspension testing has been added as a new chapter.
The use of an active component in an automotive suspension to enhance the overall performance by overcoming the compromises between conflicting demands such as passenger comfort and road handling has been the focus of researchers for many decades. The main objective of this research is two-fold: the first objective is to assess the benefits of using advanced control methods for the design of active suspension systems: the second objective is to investigate a relatively new concept of active infinitely variable natural frequency IVNF pneumatic suspension design. The active IVNF suspension has the ability to infinitely vary the natural frequency that allows it to achieve superior performance over contemporary suspension systems. In order to assess the effectiveness of various controller designs, a quarter car suspension model from existing litersture is used. Three different control designs (PI, LQG, and H[subscript infinity]) are compared for stability, performance and robustness. It is shown that the advanced H[subscript infinity] control design methodology yields a superior controller that has significantly better stability and performance robustness as compared to classical designs that are currently in use. The novel concept of using an active pneumatic suspension system that has an infinitely variable natural frequency is thoroughly investigated. A complete non-linear analytical model for a quarter car active IVNF pneumatic suspension system is obtained. The two candidate controller designs, LQG and H[subscript infinity], are used to design robust controllers for the nominal Linearized model derived for this system. A thorough investigation is performed to assess the technical viability of using active IVNF pneumatic suspension system, which uses active control designed using advanced control design methodologies. The simulation results demonstrate that implementation of an active IVNF pneumatic suspension system is indeed possible. The successful experimental validation of simulation results has a potential to revolutionize the future generation of vehicle suspension systems. The continued research will primarily focus on experimental validation of the results obtained in this thesis.
This book focuses on most recent theoretical findings on control issues for active suspension systems. The authors first introduce the theoretical background of active suspension control, then present constrained H∞ control approaches of active suspension systems in the entire frequency domain, focusing on the state feedback and dynamic output feedback controller in the finite frequency domain which people are most sensitive to. The book also contains nonlinear constrained tracking control via terminal sliding-mode control and adaptive robust theory, presenting controller design of active suspensions as well as the reliability control of active suspension systems. The target audience primarily comprises research experts in control theory, but the book may also be beneficial for graduate students alike.