Download Free Optimizing Spatial And Temporal Treatments To Maintain Effective Fire And Non Fire Fuels Treatments At Landscape Scales Book in PDF and EPUB Free Download. You can read online Optimizing Spatial And Temporal Treatments To Maintain Effective Fire And Non Fire Fuels Treatments At Landscape Scales and write the review.

The objective of this project was to integrate existing fire behavior, vegetation simulation, and land management planning tools into a system that supports long-term fuel management decisions. The system was to build on the existing land management optimization tool MAGIS, while incorporating the Forest Vegetation Simulator and the Fire and Fuels Extension (FVS-FFE) to project vegetation change over planning periods and predict the resulting fuel parameters for fire behavior modeling, and FlamMap to model fire behavior in each planning period. The system was to include automated data transfer interfaces between the models to offer an easier way to use multiple sophisticated models for analyzing alternative fuel management schedules.
What do economists know about land-and how they know? The Oxford Handbook of Land Economics describes the latest developments in the fields of economics that examine land, including natural resource economics, environmental economics, regional science, and urban economics. The handbook argues, first, that land is a theme that integrates these fields and second, that productive integration increasingly occurs not just within economics but also across disciplines. Greater recognition and integration stimulates cross-fertilization among the fields of land economics research. By providing a comprehensive survey of land-related work in several economics fields, this handbook provides the basic tools needed for economists to redefine the scope and focus of their work to better incorporate the contemporary thinking from other fields and to push out the frontiers of land economics. The first section presents recent advances in the analysis of major drivers of land use change, focusing on economic development and various land-use markets. The second section presents economic research on the environmental and socio-economic impacts of land use and land use change. The third section addresses six cutting-edge approaches for land economics research, including spatial econometric, simulation, and experimental methods. The section also includes a synthetic chapter critically reviewing methodological advances. The fourth section covers policy issues. Four chapters disentangle the economics of land conservation and preservation, while three chapters examine the economic analysis of the legal institutions of land use. These chapters focus on law and economic problems of permissible government control of land in the U.S. context.
Fuel management has been used as an effective local strategy to reduce the undesirable consequences of wildfires. Many efforts toward scheduling of fuel management activities across a broader landscape have been proposed, with the hope of achieving larger landscape-scale management effects. However, scheduling of fuel management treatments across the broader landscape is limited by understandings of how individual management activities aggregate to larger scales and how they affect the behavior of wildfires. Since full coverage of a landscape with fuels management treatments is unlikely, it is necessary to examine the effects of a spatial pattern of individual management activities at the landscape scale. In this research, four spatial patterns of fuel management activities - dispersed, clumped, random, and regular - were tested to investigate their potential for reducing the risk of severe wildfire. A new methodology was developed for optimizing fuel management patterns across a landscape based on a heuristic technique and GIS databases. To quantify the cumulative effects of fuel management patterns for disrupting the progress of wildfires, overall flame length, fireline intensity, and fire size were measured for simulated fires, using a fire growth simulation model, FARSITE. The management scenarios generated from the scheduling model presented a variety of dispersion and treatment sizes, but also evenly distributed the harvest volume through the multi-decade time horizon. The optimized spatial patterns were qualified through visual examination as well as a statistical assessment. Through this research, I have learned that the efficiency of fuels management activities for reducing severity of wildfire is primarily influenced by treatment size, type, and intensity. Most importantly, treatment types and intensity are the critical factor to disrupt human-caused wildfires. The regular pattern seemed to be the most acceptable for either random ignitions or hypothetical human-caused ignitions. It provided the highest frequency in which simulated fires could contact the treated units, and higher treatment intensity measured by amount of harvested volume from a unit area. To enhance the results of this research, we suggest that one should utilize more feasible management prescriptions for post-fire fuel conditions, and expand ignition sources to other type of human-caused ignitions or natural-caused ignitions.
The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are included. The outputs from simulations illustrate potential changes in aquatic conditions and terrestrial habitat, potential for wood utilization, and socioeconomic opportunities. The 14 chapters of this document outline the current state of knowledge in each of the areas covered by the INLAS project and describe the objectives and organization of the project. The project explores ways to integrate the effects of natural disturbances and management into planning and policy analyses; illustrate potential conflicts among current policies, natural distrubances, and management activities; and explore the policy, economics, and ecological constraints associated with the application of effective fuel treatments on midscale landscapes in the interior Northwest.
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behavior over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages. This report contains four chapters. Chapter 1 states the purpose and chronicles some applications of the model. Chapter 2 details the model's content, documents links to the supporting science, and provides annotated examples of the outputs. Chapter 3 is a user's guide that presents options and examples of command usage. Chapter 4 describes how the model was customized for use in different regions. Fuel managers and silviculturists charged with managing fire-prone forests can use the FFEFVS and this document to better understand and display the consequences of alternative management actions.
Maximizing the effectiveness of fuel treatments at the landscape scale is a key research and management need given the inability to treat all areas at risk from wildfire, and there is a growing body of scientific literature assessing this need. We synthesized existing scientific literature on landscape-scale fuel treatment effectiveness in North American ecosystems through a systematic literature review. We identified 127 studies that addressed this topic using one of three approaches: simulation modeling, empirical analysis, or case studies. Of these 127 studies, most focused on forested landscapes of the western United States. Together, they generally provided evidence that fuel treatments reduced negative outcomes of wildfire and in some cases promoted beneficial wildfire outcomes, although these effects diminished over time following treatment and were influenced by factors such as weather conditions at the time of fire. The simulation studies showed that fuel treatment extent, size, placement, timing, and prescription influenced the degree of effectiveness. Empirical studies, though limited in scope, provided evidence that fuel treatments were effective at reducing the rate of spread, progression, extent, or severity of actual wildfires both within and outside of treated areas. Case studies documented outcomes of specific wildfire events and contained managers’ evaluations of fuel treatment effectiveness. These case studies shared certain characteristics associated with changing a wildfire outcome, such as recency of treatment implementation, or strategic placement in relation to previous treatments or wildfires, suppression needs/infrastructure, or prevailing winds and topographic firebreaks. Across the three study types, the importance of treating multiple strata to reduce fuels contributing to fire spread and severity was emphasized. Fuel treatments contributed to fire suppression efforts by reducing costs and facilitating suppression activities such as fireline construction. We conclude that existing literature contains useful information that can inform future fuel treatment planning, but that additional research is needed in underrepresented ecosystems and underdeveloped topics including cost-benefit analysis, fuel treatment longevity, and interactions among fuel, topography, and climate that contribute toward influencing fuel treatment effectiveness. There is a need for more empirical studies that evaluate fuel treatments beyond treatment boundaries, simulation studies that examine conditions expected under future climate scenarios, and case studies that document manager experiences and what they view are indicators of effective landscape-scale fuel treatments.
Over the past century in the western United States, warming has produced larger and more severe wildfires than previously recorded. General circulation models and their ensembles project continued increases in temperature and the proportion of precipitation falling as rain. Warmer and wetter conditions may change forest successional trajectories by modifying rates of vegetation establishment, competition, growth, reproduction, and mortality. Many questions remain regarding how these changes will occur across landscapes and how disturbances, such as wildfire, may interact with changes to climate and vegetation. Forest management is used to proactively modify forest structure and composition to improve fire resilience. Yet, research is needed to assess how to best utilize mechanical fuel reduction and prescribed fire at the landscape scale. Human communities also exist within these landscapes, and decisions regarding how to manage forests must carefully consider how management will affect such communities. In this work, three aspects of forest management are analyzed: (1) climate effects on forest composition and wildfire activity; (2) efficacy of fuel management strategies toward reducing wildfire spread and severity; and, (3) local resident perspectives on forest management. Using a forest landscape model, simulations of forest dynamics were used to investigate relationships among climate, wildfire, and topography with long-term changes in biomass for a fire-prone dry-conifer landscape in eastern Oregon. Under climate change, wildfire was more frequent, more expansive, and more severe, and ponderosa pine expanded its range into existing shrublands and high-elevation zones. There was a near-complete loss of native high-elevation tree species, such as Engelmann spruce and whitebark pine. Loss of these species were most strongly linked to burn frequency; this effect was greatest at high elevations and on steep slopes. Fuel reduction was effective at reducing wildfire spread and severity compared to unmanaged landscapes. Spatially optimizing mechanical removal of trees in areas at risk for high-severity wildfire was equally effective as distributing tree removal across the landscape. Tripling the annual area of prescribed burns was needed to affect landscape-level wildfire spread and severity, and distributing prescribed burns across the study area was more effective than concentrating fires in high-risk areas. I conclude that forest management can be used to reduce wildfire activity in dry-mixed conifer forests and that spatially optimizing mechanical treatments in high-risk areas can be a useful tool for reducing the cost and ecological impact associated with harvest operations. While reducing the severity and spread of wildfire may slow some long-term species shifts, high sub-alpine tree mortality occurred under all climate and fuel treatment scenarios. Thus, while forest management may prolong the existence of sub-alpine forests, shifts in temperature, precipitation, and wildfire may overtake management within this century. The use of PPGIS was useful for delineating the range of forest management preferences within the local community, for identifying areas of agreement among residents who have otherwise polarized views, and for generating modeling inputs that reflect views that may not be obtained through extant official channels for public participation. Because the local community has concerns about the use of prescribed fire, more education and outreach is needed. This may increase public acceptance of the amounts of prescribed fire needed to modify wildfire trajectories under future climate conditions.