Download Free Optimization Theory Decision Making And Operations Research Applications Book in PDF and EPUB Free Download. You can read online Optimization Theory Decision Making And Operations Research Applications and write the review.

These proceedings consist of 30 selected research papers based on results presented at the 10th Balkan Conference & 1st International Symposium on Operational Research (BALCOR 2011) held in Thessaloniki, Greece, September 22-24, 2011. BALCOR is an established biennial conference attended by a large number of faculty, researchers and students from the Balkan countries but also from other European and Mediterranean countries as well. Over the past decade, the BALCOR conference has facilitated the exchange of scientific and technical information on the subject of Operations Research and related fields such as Mathematical Programming, Game Theory, Multiple Criteria Decision Analysis, Information Systems, Data Mining and more, in order to promote international scientific cooperation. The carefully selected and refereed papers present important recent developments and modern applications and will serve as excellent reference for students, researchers and practitioners in these disciplines. ​
The book provides insights in the decision-making for implementing strategies in various spheres of real-world issues. It integrates optimal policies in various decision­making problems and serves as a reference for researchers and industrial practitioners. Furthermore, the book provides sound knowledge of modelling of real-world problems and solution procedure using the various optimisation and statistical techniques for making optimal decisions. The book is meant for teachers, students, researchers and industrialists who are working in the field of materials science, especially operations research and applied statistics.
For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
This textbook is comprised of detailed case studies covering challenging real world applications of OR techniques. Among the overall goals of the book is to provide readers with descriptions of the history and other background information on a variety of industries, service or other organizations in which decision making is an important component of their daily operations. The book considers all methods of optimum decision making in order to improve performances. It also compares possible solutions obtained by different approaches, concluding with a recommendation of the best among them for implementation. By exposing students to a variety of applications in a variety of areas and explaining how they can be modeled and solved, the book helps students develop the skills needed for modeling and solving problems that they may face in the workplace. Each chapter of "Case Studies in Operations Research: Applications of Optimal Decision Making" also includes additional data provided on the book’s website on Springer.com. These files contain a brief description of the area of application, the problem and the required outputs. Also provided are links to access all the data in the problem. Finally there are project exercises for students to practice what they have learnt in the chapter, which can also be used by instructors as project assignments in their courses.
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: • It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; • It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; • It accounts for the risk averse nature of decision makers; and • It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
Decision making is the process of selecting a possible course of action from all the available alternatives. In almost all such problems the multiplicity of criteria for judging the alternatives is pervasive. That is, for many such problems, the decision maker (OM) wants to attain more than one objective or goal in selecting the course of action while satisfying the constraints dictated by environment, processes, and resources. Another characteristic of these problems is that the objectives are apparently non commensurable. Mathematically, these problems can be represented as: (1. 1 ) subject to: gi(~) ~ 0, ,', . . . ,. ! where ~ is an n dimensional decision variable vector. The problem consists of n decision variables, m constraints and k objectives. Any or all of the functions may be nonlinear. In literature this problem is often referred to as a vector maximum problem (VMP). Traditionally there are two approaches for solving the VMP. One of them is to optimize one of the objectives while appending the other objectives to a constraint set so that the optimal solution would satisfy these objectives at least up to a predetermined level. The problem is given as: Max f. ~) 1 (1. 2) subject to: where at is any acceptable predetermined level for objective t. The other approach is to optimize a super-objective function created by multiplying each 2 objective function with a suitable weight and then by adding them together.
Optimization and decision making are integral parts of any manufacturing process and management system. The objective of this book is to demonstrate the confluence of theory and applications of various types of multi-criteria decision making and optimization techniques with reference to textile manufacturing and management. Divided into twelve chapters, it discusses various multi-criteria decision-making methods such as AHP, TOPSIS, ELECTRE, and optimization techniques like linear programming, fuzzy linear programming, quadratic programming, in textile domain. Multi-objective optimization problems have been dealt with two approaches, namely desirability function and evolutionary algorithm. Key Features Exclusive title covering textiles and soft computing fields including optimization and decision making Discusses concepts of traditional and non-traditional optimization methods with textile examples Explores pertinent single-objective and multi-objective optimizations Provides MATLAB coding in the Appendix to solve various types of multi-criteria decision making and optimization problems Includes examples and case studies related to textile engineering and management
This book takes a unique approach to linear optimization by focusing on the underlying principles and business applications of a topic more often taught from a mathematical and computational perspective. By shifting the perspective away from heavy math, students learn how optimization can be used to drive decision making in real world business settings. The book does not shy away from the theory underlying linear optimization but rather focuses on ensuring students understand the logic without getting caught up in proving theorems. Plenty of examples, applications and case studies are included to help bridge the gap between the theory and the way it plays out in practice. The author has also included several Excel spreadsheets, showing worked-out models of linear optimization that have been used to drive decisions ranging from configuring a police force to purchasing crude oil and media planning. How can the routes and pricing structures of airlines be optimized? How much should be invested in the prevention and punishment of crimes? These are everyday problems that can be solved using linear optimization, and this book shows students just how to do that. It will prove a useful, math-free resource for all students of management science and operations research.