Download Free Optimization Of Stochastic Models Book in PDF and EPUB Free Download. You can read online Optimization Of Stochastic Models and write the review.

A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.
In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations. In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
This groundbreaking book extends traditional approaches of risk measurement and portfolio optimization by combining distributional models with risk or performance measures into one framework. Throughout these pages, the expert authors explain the fundamentals of probability metrics, outline new approaches to portfolio optimization, and discuss a variety of essential risk measures. Using numerous examples, they illustrate a range of applications to optimal portfolio choice and risk theory, as well as applications to the area of computational finance that may be useful to financial engineers.
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today’s state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.
Reliability theory and applications become major concerns of engineers and managers engaged in making high quality products and designing highly reliable systems. This book aims to survey new research topics in reliability theory and useful applied techniques in reliability engineering.Our research group in Nagoya, Japan has continued to study reliability theory and applications for more than twenty years, and has presented and published many good papers at international conferences and in journals. This book focuses mainly on how to apply the results of reliability theory to practical models. Theoretical results of coherent, inspection, and damage systems are summarized methodically, using the techniques of stochastic processes. There exist optimization problems in computer and management sciences and engineering. It is shown that such problems as computer, information and network systems are solved by using the techniques of reliability. Furthermore, some useful techniques applied to the analysis of stochastic models in management science and plants are shown.The reader will learn new topics and techniques, and how to apply reliability models to actual ones. The book will serve as an essential guide to a subject of study for graduate students and researchers and as a useful guide for reliability engineers engaged not only in maintenance work but also in management and computer works.
Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.