Download Free Optimization Methods In Partial Differential Equations Book in PDF and EPUB Free Download. You can read online Optimization Methods In Partial Differential Equations and write the review.

Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
Solving optimization problems subject to constraints given in terms of partial d- ferential equations (PDEs) with additional constraints on the controls and/or states is one of the most challenging problems in the context of industrial, medical and economical applications, where the transition from model-based numerical si- lations to model-based design and optimal control is crucial. For the treatment of such optimization problems the interaction of optimization techniques and num- ical simulation plays a central role. After proper discretization, the number of op- 3 10 timization variables varies between 10 and 10 . It is only very recently that the enormous advances in computing power have made it possible to attack problems of this size. However, in order to accomplish this task it is crucial to utilize and f- ther explore the speci?c mathematical structure of optimization problems with PDE constraints, and to develop new mathematical approaches concerning mathematical analysis, structure exploiting algorithms, and discretization, with a special focus on prototype applications. The present book provides a modern introduction to the rapidly developing ma- ematical ?eld of optimization with PDE constraints. The ?rst chapter introduces to the analytical background and optimality theory for optimization problems with PDEs. Optimization problems with PDE-constraints are posed in in?nite dim- sional spaces. Therefore, functional analytic techniques, function space theory, as well as existence- and uniqueness results for the underlying PDE are essential to study the existence of optimal solutions and to derive optimality conditions.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
This book introduces, in an accessible way, the basic elements of Numerical PDE-Constrained Optimization, from the derivation of optimality conditions to the design of solution algorithms. Numerical optimization methods in function-spaces and their application to PDE-constrained problems are carefully presented. The developed results are illustrated with several examples, including linear and nonlinear ones. In addition, MATLAB codes, for representative problems, are included. Furthermore, recent results in the emerging field of nonsmooth numerical PDE constrained optimization are also covered. The book provides an overview on the derivation of optimality conditions and on some solution algorithms for problems involving bound constraints, state-constraints, sparse cost functionals and variational inequality constraints.
This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia~i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems.
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs)​. As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
Domain decomposition methods are divide and conquer computational methods for the parallel solution of partial differential equations of elliptic or parabolic type. The methodology includes iterative algorithms, and techniques for non-matching grid discretizations and heterogeneous approximations. This book serves as a matrix oriented introduction to domain decomposition methodology. A wide range of topics are discussed include hybrid formulations, Schwarz, and many more.
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.