Download Free Optimization In Engineering Sciences Book in PDF and EPUB Free Download. You can read online Optimization In Engineering Sciences and write the review.

This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.
We are rarely asked to. make decisions based on only one criterion; most often, decisions are based on several usually confticting, criteria. In nature, if the design of a system evolves to some final, optimal state, then it must include a balance for the interaction of the system with its surroundings certainly a design based on a variety of criteria. Furthermore, the diversity of nature's designs suggests an infinity of such optimal states. In another sense, decisions simultaneously optimize a finite number of criteria, while there is usually an infinity of optimal solutions. Multicriteria optimization provides the mathematical framework to accommodate these demands. Multicriteria optimization has its roots in mathematical economics, in particular, in consumer economics as considered by Edgeworth and Pareto. The critical question in an exchange economy concerns the "equilibrium point" at which each of N consumers has achieved the best possible deal for hirnself or herself. Ultimately, this is a collective decision in which any further gain by one consumer can occur only at the expense of at least one other consumer. Such an equilibrium concept was first introduced by Edgeworth in 1881 in his book on mathematical psychics. Today, such an optimum is variously called "Pareto optimum" (after the Italian-French welfare economist who continued and expanded Edgeworth's work), "effi. cient," "nondominated," and so on.
Achieving a better solution or improving the performance of existing system design is an ongoing a process for which scientists, engineers, mathematicians and researchers have been striving for many years. Ever increasingly practical and robust methods have been developed, and every new generation of computers with their increased power and speed allows for the development and wider application of new types of solutions. This book defines the fundamentals, background and theoretical concepts of optimization principles in a comprehensive manner along with their potential applications and implementation strategies. It encompasses linear programming, multivariable methods for risk assessment, nonlinear methods, ant colony optimization, particle swarm optimization, multi-criterion and topology optimization, learning classifier, case studies on six sigma, performance measures and evaluation, multi-objective optimization problems, machine learning approaches, genetic algorithms and quality of service optimizations. The book will be very useful for wide spectrum of target readers including students and researchers in academia and industry.
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.
method enables readers to: *efficiently design higher-quality, lower cost objects with less metal requirements, vibration and noise, and with lower dynamic loads and energy consumption *determine optimal solutions, regardless of the number of criteria involved, and to identify relationships among different criteria and between criteria and design variables *accurately account for discrepancies between theoretical and actual characteristics, using a special set of adequacy criteria *determine optimal design variables for complex finite element models In addition, the book helps readers: *enhance the potential of the PSI method with theoretical investigations and algorithms for approximating the feasible solutions set and Pareto optimal set *facilitate proficient problem-solving by incorporating recently obtained results from the theory of uniformly distributed sequences *evaluate design procedures by observing examples ranging from machine tools and agricultural equipment to automobiles and aviation This practical, in-depth treatment of multicriteria optimization and engineering is essential for engineers and designers working in research and development of manufacturing machines, mechanisms and structures. It is also an important text for students of applied mathematics, mechanical engineering, optimal control and operations research.
Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and numerous examples facilitate understanding of the theory, and practical tips address common issues encountered in practical engineering design optimization and how to address them. Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into practice. Accompanied online by a solutions manual for instructors and source code for problems, this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechanical, electrical, and chemical engineering departments.
Optimization is central to any problem involving decision-making in engineering. Optimization theory and methods deal with selecting the best option regarding the given objective function or performance index. New algorithmic and theoretical techniques have been developed for this purpose, and have rapidly diffused into other disciplines. As a result, our knowledge of all aspects of the field has grown even more profound. In Optimization for Engineering Problems, eminent researchers in the field present the latest knowledge and techniques on the subject of optimization in engineering. Whereas the majority of work in this area focuses on other applications, this book applies advanced and algorithm-based optimization techniques specifically to problems in engineering.
The purpose of this book is to present the main metaheuristics and approximate and stochastic methods for optimization of complex systems in Engineering Sciences. It has been written within the framework of the European Union project ERRIC (Empowering Romanian Research on Intelligent Information Technologies), which is funded by the EU’s FP7 Research Potential program and has been developed in co-operation between French and Romanian teaching researchers. Through the principles of various proposed algorithms (with additional references) this book allows the reader to explore various methods of implementation such as metaheuristics, local search and populationbased methods. It examines multi-objective and stochastic optimization, as well as methods and tools for computer-aided decision-making and simulation for decision-making.