Download Free Optimization Control And Applications In The Information Age Book in PDF and EPUB Free Download. You can read online Optimization Control And Applications In The Information Age and write the review.

Recent developments in theory, algorithms, and applications in optimization and control are discussed in this proceedings, based on selected talks from the ‘Optimization Control and Applications in the Information Age’ conference, organized in honor of Panos Pardalos’s 60th birthday. This volume contains numerous applications to optimal decision making in energy production and fuel management, data mining, logistics, supply chain management, market network analysis, risk analysis, and community network analysis. In addition, a short biography is included describing Dr. Pardalos’s path from a shepherd village on the high mountains of Thessaly to academic success. Due to the wide range of topics such as global optimization, combinatorial optimization, game theory, stochastics and programming contained in this publication, scientists, researchers, and students in optimization, operations research, analytics, mathematics and computer science will be interested in this volume.
Researchers and practitioners in computer science, optimization, operations research and mathematics will find this book useful as it illustrates optimization models and solution methods in discrete, non-differentiable, stochastic, and nonlinear optimization. Contributions from experts in optimization are showcased in this book showcase a broad range of applications and topics detailed in this volume, including pattern and image recognition, computer vision, robust network design, and process control in nonlinear distributed systems. This book is dedicated to the 80th birthday of Ivan V. Sergienko, who is a member of the National Academy of Sciences (NAS) of Ukraine and the director of the V.M. Glushkov Institute of Cybernetics. His work has had a significant impact on several theoretical and applied aspects of discrete optimization, computational mathematics, systems analysis and mathematical modeling.
This book begins with a concentrated introduction into deterministic global optimization and moves forward to present new original results from the authors who are well known experts in the field. Multiextremal continuous problems that have an unknown structure with Lipschitz objective functions and functions having the first Lipschitz derivatives defined over hyperintervals are examined. A class of algorithms using several Lipschitz constants is introduced which has its origins in the DIRECT (DIviding RECTangles) method. This new class is based on an efficient strategy that is applied for the search domain partitioning. In addition a survey on derivative free methods and methods using the first derivatives is given for both one-dimensional and multi-dimensional cases. Non-smooth and smooth minorants and acceleration techniques that can speed up several classes of global optimization methods with examples of applications and problems arising in numerical testing of global optimization algorithms are discussed. Theoretical considerations are illustrated through engineering applications. Extensive numerical testing of algorithms described in this book stretches the likelihood of establishing a link between mathematicians and practitioners. The authors conclude by describing applications and a generator of random classes of test functions with known local and global minima that is used in more than 40 countries of the world. This title serves as a starting point for students, researchers, engineers, and other professionals in operations research, management science, computer science, engineering, economics, environmental sciences, industrial and applied mathematics to obtain an overview of deterministic global optimization.
Current research results in stochastic and deterministic global optimization including single and multiple objectives are explored and presented in this book by leading specialists from various fields. Contributions include applications to multidimensional data visualization, regression, survey calibration, inventory management, timetabling, chemical engineering, energy systems, and competitive facility location. Graduate students, researchers, and scientists in computer science, numerical analysis, optimization, and applied mathematics will be fascinated by the theoretical, computational, and application-oriented aspects of stochastic and deterministic global optimization explored in this book. This volume is dedicated to the 70th birthday of Antanas Žilinskas who is a leading world expert in global optimization. Professor Žilinskas's research has concentrated on studying models for the objective function, the development and implementation of efficient algorithms for global optimization with single and multiple objectives, and application of algorithms for solving real-world practical problems.
This Proceedings book provides essential insights into the current state of research in the field of human–computer interactions. It presents the outcomes of the International Conference on Man–Machine Interactions (ICMMI 2017), held on October 3–6, 2017, in Cracow, Poland, which offers a unique international platform for researchers and practitioners to share cutting-edge developments related to technologies, algorithms, tools and systems focused on the means by which humans interact and communicate with computers. This book is the 5th edition in the series and includes a unique selection of high-quality, original papers highlighting the latest theoretical and practical research on technologies, applications and challenges encountered in the rapidly evolving new forms of human–machine relationships. Major research topics covered include human–computer interfaces, bio-data analysis and mining, image analysis and signal processing, decision support and expert systems, pattern recognition, algorithms and optimisations, computer networks, and data management systems. As such, the book offers a valuable resource for researchers in academia, industry and other fields whose work involves man–machine interactions.
This book constitutes the refereed post-conference proceedings of the 21st Iberoamerican Congress on Pattern Recognition, CIARP 2016, held in Lima, Peru, in November 2016. The 69 papers presented were carefully reviewed and selected from 131 submissions. The papers feature research results in the areas of pattern recognition, biometrics, image processing, computer vision, speech recognition, and remote sensing. They constitute theoretical as well as applied contributions in many fields related to the main topics of the conference.
Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existence of solutions to ordinary differential equations in Banach spaces with rapidly varying right-hand sides.
The two-volume set LNCS 11508 and 11509 constitutes the refereed proceedings of of the 18th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2019, held in Zakopane, Poland, in June 2019. The 122 revised full papers presented were carefully reviewed and selected from 333 submissions. The papers included in the first volume are organized in the following five parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; pattern classification; artificial intelligence in modeling and simulation. The papers included in the second volume are organized in the following five parts: computer vision, image and speech analysis; bioinformatics, biometrics, and medical applications; data mining; various problems of artificial intelligence; agent systems, robotics and control.
Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation. Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence. - Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others - Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework - Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegö limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars.