Download Free Optimization Approaches For Electricity Generation Expansion Planning Under Uncertainty Book in PDF and EPUB Free Download. You can read online Optimization Approaches For Electricity Generation Expansion Planning Under Uncertainty and write the review.

This book presents a panoramic look at the transformation of the transmission network in the context of the energy transition. It provides readers with basic definitions as well as details on current challenges and emerging technologies. In-depth chapters cover the integration of renewables, the particularities of planning large-scale systems, efficient reduction and solution methods, the possibilities of HVDC and super grids, distributed generation, smart grids, demand response, and new regulatory schemes. The content is complemented with case studies that highlight the importance of the power transmission network as the backbone of modern energy systems. This book will be a comprehensive reference that will be useful to both academics and practitioners.
Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. - Provides chapters written by experts in the field - Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems - Provides accompanying computer code for related chapters
Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems Discover how modern techniques have shaped complex power system expansion planning with this one-stop resource from two experts in the field Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems delivers a comprehensive collection of innovative approaches to the probabilistic planning of generation and transmission systems under uncertainties. The book includes renewables and energy storage calculations when using probabilistic and deterministic reliability techniques to assess system performance from a long-term expansion planning viewpoint. Divided into two sections, the book first covers topics related to Generation Expansion Planning, with chapters on cost assessment, methodology and optimization, and more. The second and final section provides information on Transmission System Expansion Planning, with chapters on reliability constraints, probabilistic production cost simulation, and more. Probabilistic Power System Expansion Planning compares the optimization and methodology across dynamic, linear, and integer programming and explores the branch and bound algorithm. Along with case studies to demonstrate how the techniques described within have been applied in complex power system expansion planning problems, readers will enjoy: A thorough discussion of generation expansion planning, including cost assessment, methodology and optimization, and probabilistic production cost An exploration of transmission system expansion planning, including the branch and bound algorithm, probabilistic production cost simulation for TEP, and TEP with reliability constraints An examination of fuzzy decision making applied to transmission system expansion planning A treatment of probabilistic reliability-based grid expansion planning of power systems including wind turbine generators Perfect for power and energy systems designers, planners, operators, consultants, practicing engineers, software developers, and researchers, Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems will also earn a place in the libraries of practicing engineers who regularly deal with optimization problems.
Uncertainties in Modern Power Systems combines several aspects of uncertainty management in power systems at the planning and operation stages within an integrated framework. This book provides the state-of-the-art in electric network planning, including time-scales, reliability, quality, optimal allocation of compensators and distributed generators, mathematical formulation, and search algorithms. The book introduces innovative research outcomes, programs, algorithms, and approaches that consolidate the present status and future opportunities and challenges of power systems. The book also offers a comprehensive description of the overall process in terms of understanding, creating, data gathering, and managing complex electrical engineering applications with uncertainties. This reference is useful for researchers, engineers, and operators in power distribution systems. - Includes innovative research outcomes, programs, algorithms, and approaches that consolidate current status and future of modern power systems - Discusses how uncertainties will impact on the performance of power systems - Offers solutions to significant challenges in power systems planning to achieve the best operational performance of the different electric power sectors
The scope of this book covers the modeling and forecast of renewable energy and operation and planning of power system with renewable energy integration.The first part presents mathematical theories of stochastic mathematics; the second presents modeling and analytic techniques for renewable energy generation; the third provides solutions on how to handle the uncertainty of renewable energy in power system operation. It includes advanced stochastic unit commitment models to acquire the optimal generation schedule under uncertainty, efficient algorithms to calculate the probabilistic power, and an efficient operation strategy for renewable power plants participating in electricity markets.
This book provides an in-depth analysis of investment problems pertaining to electric energy infrastructure, including both generation and transmission facilities. The analysis encompasses decision-making tools for expansion planning, reinforcement, and the selection and timing of investment options. In this regard, the book provides an up-to-date description of analytical tools to address challenging investment questions such as: How can we expand and/or reinforce our aging electricity transmission infrastructure? How can we expand the transmission network of a given region to integrate significant amounts of renewable generation? How can we expand generation facilities to achieve a low-carbon electricity production system? How can we expand the generation system while ensuring appropriate levels of flexibility to accommodate both demand-related and production-related uncertainties? How can we choose among alternative production facilities? What is the right time to invest in a given production or transmission facility? Written in a tutorial style and modular format, the book includes a wealth of illustrative examples to facilitate comprehension. It is intended for advanced undergraduate and graduate students in the fields of electric energy systems, operations research, management science, and economics. Practitioners in the electric energy sector will also benefit from the concepts and techniques presented here.
This book discusses the recent developments in robust optimization (RO) and information gap design theory (IGDT) methods and their application for the optimal planning and operation of electric energy systems. Chapters cover both theoretical background and applications to address common uncertainty factors such as load variation, power market price, and power generation of renewable energy sources. Case studies with real-world applications are included to help undergraduate and graduate students, researchers and engineers solve robust power and energy optimization problems and provide effective and promising solutions for the robust planning and operation of electric energy systems.
This book introduces the fundamentals of probability, statistical, and reliability concepts, the classical methods of uncertainty quantification and analytical reliability analysis, and the state-of-the-art approaches of design optimization under uncertainty (e.g., reliability-based design optimization and robust design optimization). The topics include basic concepts of probability and distributions, uncertainty quantification using probabilistic methods, classical reliability analysis methods, time-variant reliability analysis methods, fundamentals of deterministic design optimization, reliability-based design optimization, robust design optimization, other methods of design optimization under uncertainty, and engineering applications of design optimization under uncertainty.
A guide to using the power of design flexibility to improve the performance of complex technological projects, for designers, managers, users, and analysts. Project teams can improve results by recognizing that the future is inevitably uncertain and that by creating flexible designs they can adapt to eventualities. This approach enables them to take advantage of new opportunities and avoid harmful losses. Designers of complex, long-lasting projects—such as communication networks, power plants, or hospitals—must learn to abandon fixed specifications and narrow forecasts. They need to avoid the “flaw of averages,” the conceptual pitfall that traps so many designs in underperformance. Failure to allow for changing circumstances risks leaving significant value untapped. This book is a guide for creating and implementing value-enhancing flexibility in design. It will be an essential resource for all participants in the development and operation of technological systems: designers, managers, financial analysts, investors, regulators, and academics. The book provides a high-level overview of why flexibility in design is needed to deliver significantly increased value. It describes in detail methods to identify, select, and implement useful flexibility. The book is unique in that it explicitly recognizes that future outcomes are uncertain. It thus presents forecasting, analysis, and evaluation tools especially suited to this reality. Appendixes provide expanded explanations of concepts and analytic tools.
Comprehensive in scope, Real Options reviews current techniques of capital budgeting and details an approach (based on the pricing of options) that provides a means of quantifying the elusive elements of managerial flexibility in the face of unexpected changes in the market. In the 1970s and the 1980s, developments in the valuation of capital-investment opportunities based on options pricing revolutionized capital budgeting. Managerial flexibility to adapt and revise future decisions in order to capitalize on favorable future opportunities or to limit losses has proven vital to long-term corporate success in an uncertain and changing marketplace. In this book Lenos Trigeorgis, who has helped shape the field of real options, brings together a wealth of previously scattered knowledge and research on the new flexibility in corporate resource allocation and in the evaluation of investment alternatives brought about by the shift from static cash-flow approaches to the more dynamic paradigm of real options—an approach that incorporates decisions on whether to defer, expand, contract, abandon, switch use, or otherwise alter a capital investment. Comprehensive in scope, Real Options reviews current techniques of capital budgeting and details an approach (based on the pricing of options) that provides a means of quantifying the elusive elements of managerial flexibility in the face of unexpected changes in the market. Also discussed are the strategic value of new technology, project interdependence, and competitive interaction. The ability to value real options has so dramatically altered the way in which corporate resources are allocated that future textbooks on capital budgeting will bear little resemblance to those of even the recent past. Real Options is a pioneer in this area, coupling a coherent picture of how option theory is used with practical insights in into real-world applications.