Download Free Optimisation Of Sodium Cooled Fast Reactors Book in PDF and EPUB Free Download. You can read online Optimisation Of Sodium Cooled Fast Reactors and write the review.

"Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.
"This publication is based on the experience of an IAEA coordinated research project on control rod withdrawal and sodium natural circulation tests performed during the Phenix end-of-life experiments. Presented in this publication are the benchmark analyses of the natural circulation test performed before the definite shutdown of the reactor. The experimental data gathered during these tests represent a unique resource to carry out validation analyses and code-to-code comparisons. The benchmark analyses allowed participants to investigate and verify several system and safety codes currently used in the analyses of liquid metal thermal hydraulics phenomena in sodium fast reactors."--Publisher's description.
This book is a complete update of the classic 1981 FAST BREEDER REACTORS textbook authored by Alan E. Waltar and Albert B. Reynolds, which , along with the Russian translation, served as a major reference book for fast reactors systems. Major updates include transmutation physics (a key technology to substantially ameliorate issues associated with the storage of high-level nuclear waste ), advances in fuels and materials technology (including metal fuels and cladding materials capable of high-temperature and high burnup), and new approaches to reactor safety (including passive safety technology), New chapters on gas-cooled and lead-cooled fast spectrum reactors are also included. Key international experts contributing to the text include Chaim Braun, (Stanford University) Ronald Omberg, (Pacific Northwest National Laboratory, Massimo Salvatores (CEA, France), Baldev Raj, (Indira Gandhi Center for Atomic Research, India) , John Sackett (Argonne National Laboratory), Kevan Weaver, (TerraPower Corporation) ,James Seinicki(Argonne National Laboratory). Russell Stachowski (General Electric), Toshikazu Takeda (University of Fukui, Japan), and Yoshitaka Chikazawa (Japan Atomic Energy Agency).
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors
Sodium-cooled Fast Reactors is the third volume in the JSME Series on Thermal and Nuclear Power Generation, which presents a comprehensive view of the latest research and activities from around the globe. Volume Editors Masaki Morishita and Hiroyuki Ohshima, along with their team of expert contributors, combine their knowledge and experience to provide a solid understanding of the history of SFRs and work carried out in Japan to date. This book uniquely includes case studies from these global regions to highlight SFR uses, benefits and challenges, focusing on their safety, design, operation, and maintenance. Unique to this publication, the JSME cover key technological advances which will shape power generation of the future, including developments in the use of AI for design. Drawing on their unique experience, the authors pass on lessons learned and best practices to support professionals and researchers in their development and design of this advanced reactor type. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies mainly from Japan to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of SFR systems
Presents a survey of worldwide experience gained with fast breeder reactor design, development and operation. Coverage includes state of the art of liquid metal fast reactor development; lead-bismuth cooled (LBC) ship reactor operation experience and LBC fast power reactor development; and treatment and disposal of spent sodium.
Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. The fast reactor database (FRDB) summarised in this report contains detailed design and operational data on 37 fast reactor plants, their thermal power ranging from 10 to 4000 MW, covering experimental, prototype, demonstration and commercial size LMFRs. Data includes physical, hydraulic and thermomechanical characteristics, technological requirements and methods and criteria to ensure safe operation, as well as dimensions, materials information and main design features and performance parameters of reactor cores, components and various systems, along with sketches and drawings.
This book provides the basis of simulating a nuclear plant, in understanding the knowledge of how such simulations help in assuring the safety of the plants, thereby protecting the public from accidents. It provides the reader with an in-depth knowledge about modeling the thermal and flow processes in a fast reactor and gives an idea about the different numerical solution methods. The text highlights the application of the simulation to typical sodium-cooled fast reactor. The book • Discusses mathematical modeling of the heat transfer process in a fast reactor cooled by sodium. • Compares different numerical techniques and brings out the best one for the solution of the models. • Provides a methodology of validation based on experiments. • Examines modeling and simulation aspects necessary for the safe design of a fast reactor. • Emphasizes plant dynamics aspects, which is important for relating the interaction between the components in the heat transport systems. • Discusses the application of the models to the design of a sodium-cooled fast reactor It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields of nuclear engineering, mechanical engineering, and power cycle engineering.
Designed for graduate-level engineering students and nuclear engineers who want to expand their knowledge of fast nuclear reactors.