Download Free Optimality Conditions For Vector Optimization Problems With Variable Ordering Structures Book in PDF and EPUB Free Download. You can read online Optimality Conditions For Vector Optimization Problems With Variable Ordering Structures and write the review.

This book provides an introduction to vector optimization with variable ordering structures, i.e., to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice.
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality and applications in economics among other things.
This book contains the latest advances in variational analysis and set / vector optimization, including uncertain optimization, optimal control and bilevel optimization. Recent developments concerning scalarization techniques, necessary and sufficient optimality conditions and duality statements are given. New numerical methods for efficiently solving set optimization problems are provided. Moreover, applications in economics, finance and risk theory are discussed. Summary The objective of this book is to present advances in different areas of variational analysis and set optimization, especially uncertain optimization, optimal control and bilevel optimization. Uncertain optimization problems will be approached from both a stochastic as well as a robust point of view. This leads to different interpretations of the solutions, which widens the choices for a decision-maker given his preferences. Recent developments regarding linear and nonlinear scalarization techniques with solid and nonsolid ordering cones for solving set optimization problems are discussed in this book. These results are useful for deriving optimality conditions for set and vector optimization problems. Consequently, necessary and sufficient optimality conditions are presented within this book, both in terms of scalarization as well as generalized derivatives. Moreover, an overview of existing duality statements and new duality assertions is given. The book also addresses the field of variable domination structures in vector and set optimization. Including variable ordering cones is especially important in applications such as medical image registration with uncertainties. This book covers a wide range of applications of set optimization. These range from finance, investment, insurance, control theory, economics to risk theory. As uncertain multi-objective optimization, especially robust approaches, lead to set optimization, one main focus of this book is uncertain optimization. Important recent developments concerning numerical methods for solving set optimization problems sufficiently fast are main features of this book. These are illustrated by various examples as well as easy-to-follow-steps in order to facilitate the decision process for users. Simple techniques aimed at practitioners working in the fields of mathematical programming, finance and portfolio selection are presented. These will help in the decision-making process, as well as give an overview of nondominated solutions to choose from.
Building on fundamental results in variational analysis, this monograph presents new and recent developments in the field as well as selected applications. Accessible to a broad spectrum of potential readers, the main material is presented in finite-dimensional spaces. Infinite-dimensional developments are discussed at the end of each chapter with comprehensive commentaries which emphasize the essence of major results, track the genesis of ideas, provide historical comments, and illuminate challenging open questions and directions for future research. The first half of the book (Chapters 1–6) gives a systematic exposition of key concepts and facts, containing basic material as well as some recent and new developments. These first chapters are particularly accessible to masters/doctoral students taking courses in modern optimization, variational analysis, applied analysis, variational inequalities, and variational methods. The reader’s development of skills will be facilitated as they work through each, or a portion of, the multitude of exercises of varying levels. Additionally, the reader may find hints and references to more difficult exercises and are encouraged to receive further inspiration from the gems in chapter commentaries. Chapters 7–10 focus on recent results and applications of variational analysis to advanced problems in modern optimization theory, including its hierarchical and multiobjective aspects, as well as microeconomics, and related areas. It will be of great use to researchers and professionals in applied and behavioral sciences and engineering.
This book discusses basic tools of partially ordered spaces and applies them to variational methods in Nonlinear Analysis and for optimizing problems. This book is aimed at graduate students and research mathematicians.
We always come cross several decision-making problems in our daily life. Such problems are always conflicting in which many different view points should be satisfied. In politics, business, industrial systems, management science, networks, etc. one often encounters such kind of problems. The most important and difficult part in such problems is the conflict between various objectives and goals. In these problems, one has to find the minimum(or maximum) for several objective functions. Such problems are called vector optimization problems (VOP),multi-criteria optimization problems or multi-objective optimization problems. This volume deals with several different topics / aspects of vector optimization theory ranging from the very beginning to the most recent one. It contains fourteen chapters written by different experts in the field of vector optimization.
This book is devoted to one of the main questions of the theory of extremal problems, namely, to necessary and sufficient extremality conditions. The book consists of four parts. First, the abstract minimization problem with constraints is studied. The next chapter is devoted to one of the most important classes of extremal problems, the optimal control problem. Next, one of the main objects of the calculus of variations is studied, the integral quadratic form. Finally, local properties of smooth nonlinear mappings in a neighborhood of an abnormal point will be discussed. Audience: The book is intended for researchers interested in optimization problems. The book may also be useful for advanced students and postgraduate students.
This book includes selected papers presented at the Indo-French Seminar on Optimization, Variational Analysis and Applications (IFSOVAA-2020), held at the Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India, from 2–4 February 2020. The book discusses current optimization problems and their solutions by using the powerful tool of variational analysis. Topics covered in this volume include set optimization, multiobjective optimization, mathematical programs with complementary, equilibrium, vanishing and switching constraints, copositive optimization, interval-valued optimization, sequential quadratic programming, bound-constrained optimization, variational inequalities, and more. Several applications in different branches of applied mathematics, engineering, economics, finance, and medical sciences have been included. Each chapter not only provides a detailed survey of the topic but also builds systematic theories and suitable algorithms to deduce the most recent findings in literature. This volume appeals to graduate students as well as researchers and practitioners in pure and applied mathematics and related fields that make use of variational analysis in solving optimization problems.