Download Free Optimal Determination Of Global Tropospheric Oh Concentrations Using Multiple Trace Gases Book in PDF and EPUB Free Download. You can read online Optimal Determination Of Global Tropospheric Oh Concentrations Using Multiple Trace Gases and write the review.

The hydroxyl radical (OH) plays a decisive role in tropospheric chemistry. Reactions with OH provide the dominant path of removal for a variety of greenhouse gases and trace species that contribute to the destruction of the ozone layer. Accurate determination of global tropospheric OH concentrations [OH] is therefore a very important issue. Previous research at the global scale has focused on scaling model-calculated OH concentration fields using a single so-called titrating species, either CH3CC13 or 14 CO, and the data usually come from one measurement network. Therefore, the estimation of [OH] relies heavily on the accuracy of the emission estimates and absolute calibration of the observed mixing ratios of that single species. The goal of this thesis is to reduce the dependence of estimating [OH) fields on a single species and thus to improve our knowledge of global OH concentrations and trends. To achieve this goal, we developed a multiple titrating gases scheme which combines all the possible available surface measurements of CH3CC13, CHF2C1 (HCFC-22), CH2FCF3 (HFC-134a), CH3CFC12 (HCFC-141b) and CH3CF 2C1 (HCFC- 142b) from both AGAGE (Advanced Global Atmospheric Gases Experiment) and CMDL/NOAH (Nitrous Oxide And Halocompounds) networks. The optimal estimation of the global OH concentration and its trend is accomplished through a Kalman filtering procedure by minimizing the weighted difference between the predicted mixing ratios from atmospheric chemical-transport models and, for the first time, all the measurements of the various titrating gases simultaneously. A two dimensional land-ocean-resolving (LO) statisticaldynamical model and a 12-box model are used to predict the concentrations of the titrating gases. These two models are computationally efficient, and suitable for repetitive runs and long term integrations. The eddy-diffusive transports in the 12-box model and the 2D-LO model are tuned optimally by using the Kalman filtering and CFC-11 and CFC-12 data before the estimations of OH are carried out. Three different techniques (content method, trend method, and time-varying OH method) are used to perform the Kalman filtering. These three methods optimally fit different features of the measurements and have different sources of errors. Errors in the measurements, industrial emission estimates, and chemical-transport models are included in great detail for the OH estimation problem. The random measurement errors and mismatch errors are included in the noise matrix in the Kalman filter. For other random errors from the emission estimates and chemical-transport models, we use the Q-inclusion method which specifies the random model errors explicitly in the state error matrix Q inside the Kalman filtering. For systematic errors in the calibration, model, and emissions, we use the brute-force method which repeats the entire inverse method many times using different possible values of the measurement sensitivity matrix in the Kalman filtering. Using multiple gases, both CMDL and AGAGE data, two chemical-transport models, and selected content and trend results, our best estimate of the global mean tropospheric OH concentrations is 9.4+2.7/1.7 x 105 radicals cm-3, and our best estimate of the linear OH trend is -0.5±tL1.0% per year over the 1978-1998 time period. Methyl chloroform data give the heaviest weight to the overall estimations. This is because there are more CH3CC13 measurements than for any other titrating gases, and the industrial emission estimates of this gas are the most accurate. The derived OH estimations agree statistically with previous studies taking into account the fact that the negative OH trend derived here relies heavily on the 1993-1998 CH3CCl3 data. For example, a global mean OH concentration of (9.7 ± 0.6) x 105 radicals cm- 3 and an OH trend of 0.0 ± 0.2% per year over the 1978-1993 are reported in Prinn et al. (1995). As far as the major sources of error in the OH estimations are concerned, we find that, using individual gases separately, the uncertainties in absolute calibrations, rate constants, and industrial emissions estimates are important sources of error for all five titrating gases. The measurement errors and the initial a priori guesses in the Kalman filter are also important sources of error for the three newer titrating gases (HCFC-141b, HCFC-142b, and HFC-134a) because of their very low mole fractions as well as the short measurement records for these gases. Combining multiple OH titrating gases together, we find that errors in industrial emissions contribute the most to the uncertainty in the OH estimation problem. We also find that incorporating random model errors (other than mismatch errors) using the Q-inclusion method generates satisfactory agreement for best guess estimates with the approach in which Q = 0 in the Kalman filter. However the Q-inclusion method provides an estimate of the effect of random model error. Newer titrating gases generally yield OH estimates comparable to those from CH3CCl3 but with larger uncertainties. One of the exceptions is using HCFC-142b data with the content method, which yields a physically impossible negative OH concentration because of the underestimates of emissions for this gas. However, the trend method using HCFC-142b data still delivers reasonable OH estimations, because the trend method is not sensitive to systematic errors. The measurements of the newer OH titrating gases can be used effectively with appropriate techniques to ultimately replace the use of CH3CC13 (which is disappearing from the atmosphere), provided estimates of their emissions are improved. This is particularly true for HCFC-142b. In addition to the OH estimations, a time-varying adaptive-Kalman filter is also utilized in this thesis to deduce monthly emissions of HCFC-141b and HCFC-142b. We find that the current industrial estimates of HCFC-142b need to be at least doubled, and the emissions of HCFC-141b need to be increased by 20 to 30% to achieve the best agreement with observations.
Since its discovery in early 1900, turbulence has been an interesting and complex area of study. Written by international experts, Air Pollution and Turbulence: Modeling and Applications presents advanced techniques for modeling turbulence, with a special focus on air pollution applications, including pollutant dispersion and inverse problems. The
This first encyclopaedic reference on remote sensing describes the concepts, techniques, instrumentation, data analysis, interpretation, and applications of remote sensing, both airborne and space-based. Scientists, engineers, academics, and students can quickly access answers to their reference questions and direction for further study.
This document is part of the information upon which the Parties to the United Nations Montreal Protocol will base their future decisions regarding ozone-depleting substances, their alternatives, and protection of the ozone layer. It is the latest in a long series of scientific assessments that have informed the Parties and contains the policy-relevant major findings of the Assessment's five scientific chapters. Actions taken under the Montreal Protocol have led to decreases in the atmospheric abundance of controlled ozone-depleting substances (ODSs), and are enabling the return of the ozone layer toward 1980 levels. This comprehensive volume includes many tables, figures, and charts throughout; and the appendices include acronyms and abbreviations, listings of authors, contributors, and reviewers from around the world, and chemical formulas. Related products: NASA and the Environment: The Case of Ozone Depletion is available here: https://bookstore.gpo.gov/products/nasa-and-environment-case-ozone-depletion Code of Federal Regulations, Title 40, Protection of Environment, Pt. 96-99, Revised as of July 1, 2016 can be found here: https://bookstore.gpo.gov/products/code-federal-regulations-title-40-protection-environment-pt-96-99-revised-july-1-2016 Our Changing Atmosphere: Discoveries from EOS Aura (Booklet) -reduced list price while supplies last available here: https://bookstore.gpo.gov/products/our-changing-atmosphere-discoveries-eos-aura-booklet
Atmospheric chemistry is one of the fastest growing fields in the earth sciences. Until now, however, there has been no book designed to help students capture the essence of the subject in a brief course of study. Daniel Jacob, a leading researcher and teacher in the field, addresses that problem by presenting the first textbook on atmospheric chemistry for a one-semester course. Based on the approach he developed in his class at Harvard, Jacob introduces students in clear and concise chapters to the fundamentals as well as the latest ideas and findings in the field. Jacob's aim is to show students how to use basic principles of physics and chemistry to describe a complex system such as the atmosphere. He also seeks to give students an overview of the current state of research and the work that led to this point. Jacob begins with atmospheric structure, design of simple models, atmospheric transport, and the continuity equation, and continues with geochemical cycles, the greenhouse effect, aerosols, stratospheric ozone, the oxidizing power of the atmosphere, smog, and acid rain. Each chapter concludes with a problem set based on recent scientific literature. This is a novel approach to problem-set writing, and one that successfully introduces students to the prevailing issues. This is a major contribution to a growing area of study and will be welcomed enthusiastically by students and teachers alike.
The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.
This extensively updated new edition of the widely acclaimed Treatise on Geochemistry has increased its coverage beyond the wide range of geochemical subject areas in the first edition, with five new volumes which include: the history of the atmosphere, geochemistry of mineral deposits, archaeology and anthropology, organic geochemistry and analytical geochemistry. In addition, the original Volume 1 on "Meteorites, Comets, and Planets" was expanded into two separate volumes dealing with meteorites and planets, respectively. These additions increased the number of volumes in the Treatise from 9 to 15 with the index/appendices volume remaining as the last volume (Volume 16). Each of the original volumes was scrutinized by the appropriate volume editors, with respect to necessary revisions as well as additions and deletions. As a result, 27% were republished without major changes, 66% were revised and 126 new chapters were added. In a many-faceted field such as Geochemistry, explaining and understanding how one sub-field relates to another is key. Instructors will find the complete overviews with extensive cross-referencing useful additions to their course packs and students will benefit from the contextual organization of the subject matter Six new volumes added and 66% updated from 1st edition. The Editors of this work have taken every measure to include the many suggestions received from readers and ensure comprehensiveness of coverage and added value in this 2nd edition The esteemed Board of Volume Editors and Editors-in-Chief worked cohesively to ensure a uniform and consistent approach to the content, which is an amazing accomplishment for a 15-volume work (16 volumes including index volume)!