Download Free Optimal Braking Patterns And Forces In Autonomous Safety Critical Maneuvers Book in PDF and EPUB Free Download. You can read online Optimal Braking Patterns And Forces In Autonomous Safety Critical Maneuvers and write the review.

The trend of more advanced driver-assistance features and the development toward autonomous vehicles enable new possibilities in the area of active safety. With more information available in the vehicle about the surrounding traffic and the road ahead, there is the possibility of improved active-safety systems that make use of this information for stability control in safety-critical maneuvers. Such a system could adaptively make a trade-off between controlling the longitudinal, lateral, and rotational dynamics of the vehicle in such a way that the risk of collision is minimized. To support this development, the main aim of this licentiate thesis is to provide new insights into the optimal behavior for autonomous vehicles in safety-critical situations. The knowledge gained have the potential to be used in future vehicle control systems, which can perform maneuvers at-the-limit of vehicle capabilities. Stability control of a vehicle in autonomous safety-critical at-the-limit maneuvers is analyzed by the use of optimal control. Since analytical solutions of the studied optimal control problems are intractable, they are discretized and solved numerically. A formulation of an optimization criterion depending on a single interpolation parameter is introduced, which results in a continuous family of optimal coordinated steering and braking patterns. This formulation provides several new insights into the relation between different braking patterns for vehicles in at-the-limit maneuvers. The braking patterns bridge the gap between optimal lane-keeping control and optimal yaw control, and have the potential to be used for future active-safety systems that can adapt the level of braking to the situation at hand. A new illustration named attainable force volumes is introduced, which effectively shows how the trajectory of a vehicle maneuver relates to the attainable forces over the duration of the maneuver. It is shown that the optimal behavior develops on the boundary surface of the attainable force volume. Applied to lane-keeping control, this indicates a set of control principles similar to those analytically obtained for friction-limited particle models in earlier research, but is shown to result in vehicle behavior close to the globally optimal solution also for more complex models and scenarios.
Without a driver to fall back on, a fully self-driving car needs to be able to handle any situation it can encounter. With the perspective of future safety systems, this research studies autonomous maneuvering at the tire-road friction limit. In these situations, the dynamics is highly nonlinear, and the tire-road parameters are uncertain. To gain insights into the optimal behavior of autonomous safety-critical maneuvers, they are analyzed using optimal control. Since analytical solutions of the studied optimal control problems are intractable, they are solved numerically. An optimization formulation reveals how the optimal behavior is influenced by the total amount of braking. By studying how the optimal trajectory relates to the attainable forces throughout a maneuver, it is found that maximizing the force in a certain direction is important. This is like the analytical solutions obtained for friction-limited particle models in earlier research, and it is shown to result in vehicle behavior close to the optimal also for a more complex model. Based on the insights gained from the optimal behavior, controllers for autonomous safety maneuvers are developed. These controllers are based on using acceleration-vector references obtained from friction-limited particle models. Exploiting that the individual tire forces tend to be close to their friction limits, the desired tire slip angles are determined for a given acceleration-vector reference. This results in controllers capable of operating at the limit of friction at a low computational cost and reduces the number of vehicle parameters used. For straight-line braking, ABS can intervene to reduce the braking distance without prior information about the road friction. Inspired by this, a controller that uses the available actuation according to the least friction necessary to avoid a collision is developed, resulting in autonomous collision avoidance without any estimation of the tire–road friction. Investigating time-optimal lane changes, it is found that a simple friction-limited particle model is insufficient to determine the desired acceleration vector, but including a jerk limit to account for the yaw dynamics is sufficient. To enable a tradeoff between braking and avoidance with a more general obstacle representation, the acceleration-vector reference is computed in a receding-horizon framework. The controllers developed in this thesis show great promise with low computational cost and performance not far from that obtained offline by using numerical optimization when evaluated in high-fidelity simulation.
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".
Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems.
This book was written to help engineers to design safer brakes that can be operated and maintained easily. All the necessary analytical tools to study and determine the involvement of brakes in accident causation are included as well as all essential concepts, guidelines, and design checks.
This book is the first technical overview of autonomous vehicles written for a general computing and engineering audience. The authors share their practical experiences of creating autonomous vehicle systems. These systems are complex, consisting of three major subsystems: (1) algorithms for localization, perception, and planning and control; (2) client systems, such as the robotics operating system and hardware platform; and (3) the cloud platform, which includes data storage, simulation, high-definition (HD) mapping, and deep learning model training. The algorithm subsystem extracts meaningful information from sensor raw data to understand its environment and make decisions about its actions. The client subsystem integrates these algorithms to meet real-time and reliability requirements. The cloud platform provides offline computing and storage capabilities for autonomous vehicles. Using the cloud platform, we are able to test new algorithms and update the HD map—plus, train better recognition, tracking, and decision models. This book consists of nine chapters. Chapter 1 provides an overview of autonomous vehicle systems; Chapter 2 focuses on localization technologies; Chapter 3 discusses traditional techniques used for perception; Chapter 4 discusses deep learning based techniques for perception; Chapter 5 introduces the planning and control sub-system, especially prediction and routing technologies; Chapter 6 focuses on motion planning and feedback control of the planning and control subsystem; Chapter 7 introduces reinforcement learning-based planning and control; Chapter 8 delves into the details of client systems design; and Chapter 9 provides the details of cloud platforms for autonomous driving. This book should be useful to students, researchers, and practitioners alike. Whether you are an undergraduate or a graduate student interested in autonomous driving, you will find herein a comprehensive overview of the whole autonomous vehicle technology stack. If you are an autonomous driving practitioner, the many practical techniques introduced in this book will be of interest to you. Researchers will also find plenty of references for an effective, deeper exploration of the various technologies.
This textbook is appropriate for senior undergraduate and first year graduate students in mechanical and automotive engineering. The contents in this book are presented at a theoretical-practical level. It explains vehicle dynamics concepts in detail, concentrating on their practical use. Related theorems and formal proofs are provided, as are real-life applications. Students, researchers and practicing engineers alike will appreciate the user-friendly presentation of a wealth of topics, most notably steering, handling, ride, and related components. This book also: Illustrates all key concepts with examples Includes exercises for each chapter Covers front, rear, and four wheel steering systems, as well as the advantages and disadvantages of different steering schemes Includes an emphasis on design throughout the text, which provides a practical, hands-on approach
Expectancy relates to a driver's readiness to respond to situations, events, and information in predictable and successful ways. This report describes the concept of driver expectancy in the context of the driving task, and provides examples of expectancy and expectancy violations. It includes a procedure for identifying general and specific expectancy violations to enable engineers to develop remedial treatments to deal with expectancy problems.
RAND researchers analyzed three approaches to assessing the safety of automated vehicles (AVs)--measurements, processes, and thresholds--and how they interact. Researchers also explored the elements of effective communications regarding AV safety.