Download Free Optical Scanning Holography With Matlabr Book in PDF and EPUB Free Download. You can read online Optical Scanning Holography With Matlabr and write the review.

Optical Scanning Holography is an exciting new field with many potential novel applications. This book contains tutorials, research materials, as well as new ideas and insights that will be useful for those working in the field of optics and holography. The book has been written by one of the leading researchers in the field. It covers the basic principles of the topic which will make the book relevant for years to come.
Building up from the basic principles of optics, this straightforward introduction to digital holography, aimed at graduate students, engineers and researchers, describes modern techniques and applications, plus all the necessary underlying theory. Supporting Matlab code is available for download online, and homework problems are accompanied by an instructor solution manual.
This book serves two purposes: first to introduce readers to the concepts of geometrical optics, physical optics and techniques of optical imaging and image processing, and secondly to provide them with experience in modeling the theory and applications using the commonly used software tool MATLAB®. A comprehensively revised version of the authors' earlier book Principles of Applied Optics, Contemporary Optical Image Processing with MATLAB brings out the systems aspect of optics. This includes ray optics, Fourier Optics, Gaussian beam propagation, the split-step beam propagation method, holography and complex spatial filtering, ray theory of holograms, optical scanning holography, acousto-optic image processing, edge enhancement and correlation using photorefractive materials, holographic phase distortion correction, to name a few. MATLAB examples are given throughout the text. MATLAB is emphasized since it is now a widely accepted software tool very routinely used in signal processing. A sizeable portion of this book is based on the authors' own in-class presentations, as well as research in the area. Instructive problems and MATLAB assignments are included at the end of each Chapter to enhance even further the value of this book to its readers. MATLAB is a registered trademark of The MathWorks, Inc.
This invaluable second edition provides more in-depth discussions and examples in various chapters. Based largely on the authors' own in-class lectures as well as research in the area, the comprehensive textbook serves two purposes. The first introduces some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on Fourier optics. The second presents the essentials of acousto-optics and electro-optics, and provides the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®.
Digital holography and its application to 3-D display is one of the formidable problems of evolving areas of high technology to receive great attention in recent years. This book offers a collection of key chapters that covers digital holography and 3-D display techniques to provide the state-of-the-art developments in these important areas. The book contains research material as well as reviews, new ideas and fresh insights.
This 1996 book is an expanded edition of one of the best known introductions to optical holography.
An easy-to-understand course book, based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. A step-by-step guide which details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating understanding. An ideal companion for graduates and researchers involved in engineering and applied physics, as well as interested in the growing field of information optics.
Holography has recently become a field of much interest because of the many new applications implemented by various holographic techniques. This book is a collection of 22 excellent chapters written by various experts, and it covers various aspects of holography. The chapters of the book are organized in six sections, starting with theory, continuing with materials, techniques, applications as well as digital algorithms, and finally ending with non-optical holograms. The book contains recent outputs from researches belonging to different research groups worldwide, providing a rich diversity of approaches to the topic of holography.
The first three chapters cover gaussian beam characteristics, system lens design, and image quality, forming a framework that clarifies and serves the scanning process. Subsequent chapters cover the physical scanning methods holographic, polygonal, galvanometric, resonant, acoustooptic, electrooptic
This book demonstrates the concept of Fourier ptychography, a new imaging technique that bypasses the resolution limit of the employed optics. In particular, it transforms the general challenge of high-throughput, high-resolution imaging from one that is coupled to the physical limitations of the optics to one that is solvable through computation. Demonstrated in a tutorial form and providing many MATLAB® simulation examples for the reader, it also discusses the experimental implementation and recent developments of Fourier ptychography. This book will be of interest to researchers and engineers learning simulation techniques for Fourier optics and the Fourier ptychography concept.