Download Free Optical Nano And Microsystems For Bioanalytics Book in PDF and EPUB Free Download. You can read online Optical Nano And Microsystems For Bioanalytics and write the review.

This book describes the state of the art in the field of bioanalytical nano- and microsystems with optical functionality. In 12 chapters distinguished scientists and leaders in their respective fields show how various optical technologies have been miniaturized and integrated over the last few decades in order to be combined with nano- and microsystems for applications in the life sciences. The main detection and characterization technologies are introduced, and examples of the superiority of these integrated approaches compared to traditional ones are provided. Examples from e.g. the fields of optical waveguides, integrated interferometers, surface plasmon resonance or Raman spectroscopy are introduced and discussed, and it is shown how these approaches have led to novel functionalities and thereby novel applications.
This book presents selected topics on nanotechnological applications in the strategic sector of space. It showcases some current activities and multidisciplinary approaches that have given an unprecedented control of matter at the nanoscale and will enable it to withstand the unique space environment. It focuses on the outstanding topic of dual-use nanotechnologies, illustrating the mutual benefits of key enabling materials that can be used successfully both on earth and in space. It highlights the importance of space as a strategic sector in the global economy, with ever-increasing related businesses worldwide. In this light, it dedicates a chapter to the analysis of current and future markets for space-related nanotechnological products and applications.
The book is dedicated to the method and application potential of micro segmented flow. The recent state of development of this powerful technique is presented in 12 chapters by leading researchers from different countries. In the first section, the principles of generation and manipulation of micro-fluidic segments are explained. In the second section, the micro continuous-flow synthesis of different types of nanomaterials is shown as a typical example for the use of advantages of the technique in chemistry. In the third part, the particular importance of the technique in biotechnical applications is presented demonstrating the progress for miniaturized cell-free processes, for molecular biology and DNA-based diagnostics and sequencing as well as for the development of antibiotics and the evaluation of toxic effects in medicine and environment.
21st Century Nanoscience - A Handbook: Nanophotonics, Nanoelectronics, and Nanoplasmonics (Volume 6) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This sixth volume in a ten-volume set covers nanophotonics, nanoelectronics, and nanoplasmonics. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.
This book provides wide-ranging coverage of current developments in biomedical sensing based on photonic techniques. Biomedical sensing is a dynamic topic that promises to deliver much in the future evolution of medical diagnostics, delivering advanced tools for fundamental research in biology at the micrometre and nanometre scales. The book explores a variety of alternative physical and biological methodologies that have become available for application, such as plasmonic sensors and photonic crystal biosensors. At the same time, it addresses issues that potentially limit the capability of biomedical optical sensing techniques, while reviewing the state-of-the-art in biomedical optical sensing for the future work that will lead to near-universal applications of such techniques. Edited and written by leading experts in this domain, this book is ideal as a comprehensive manual for researchers and graduate students.
This book presents an exhaustive overview of electrochemical sensors and biosensors for the analysis and monitoring of the most important analytes in the environmental field, in industry, in treatment plants and in environmental research. The chapters give the reader a comprehensive, state-of-the-art picture of the field of electrochemical sensors suitable to environmental analytes, from the theoretical principles of their design to their implementation, realization and application. The first three chapters discuss fundamentals, and the last three chapters cover the main groups of analytes of environmental interest.
This work presents the application of organic semiconductor distributed feedback laser as free-space excitation source in Raman spectroscopy. Surface-enhanced Raman scattering effect is exploited to improve the detection sensitivity. The SERS conditionis achiedved by using substrates consisting of gold-coated polymeric nanopillar arrays. The organic-laser-excited SERS measurements are applied to verify the concentration variation of biomolecule adenosine in aqueous solutions.
A groundbreaking book on the recent advances in chemical finishing, innovative fabrication strategies frequently adopted for the mechanical finishing of textiles, as well as the environmental issues in textile sectors Advanced materials are undoubtedly becoming very popular as substitutes for traditional materials in the textile engineering field. Advanced textile engineering materials are giving way to innovative textile materials with novel functions and are widely perceived as offering huge potential in a wide range of applications such as healthcare, defense, personal protective equipment, textile antennas, garments for motion capture, and sensors, etc. Advanced Engineering Textile Materials contains 13 chapters written by high profile contributors with many years of experience in textile technology, and cover fundamental and advanced approaches associated with the design and development of textile implants, conductive textiles, 3D textiles, smart-stimuli textiles, antiballistic textiles and fabric structures designed for a medical application intrabody/extra-body, implantable/non-implantable) and various modification and processing techniques.
Since the inelastic scattering of light was predicted nearly 100 years ago, Raman spectroscopy has become a mainstay of characterization techniques, with applications in a vast array of fields from chemistry to materials science and nanotechnology, from forensics to geology and art. More recently, it has found usage in the life sciences, and this book hereby outlines the state-of-the-art advances in applications of Raman spectroscopy to human health and biomedicine. It covers a wide range of human health science including medicine (especially cancer), physiology, biological molecules, pharmaceutical science, cells, viruses, microorganisms, and food science. Another highlight is that it describes recent progress on various Raman techniques such as surface-enhanced Raman scattering, tip-enhanced Raman scattering, non-linear Raman spectroscopy, Raman microscopy, and Raman imaging. Novel spectral analysis methods such as chemometrics are also prominently discussed.
Engineered Polymeric Fibrous Materials explains cutting edge techniques for the engineering of fibrous materials from physical, mechanical, and chemical points of view. Both conventional and nanofibers are described in this uniquely comprehensive book, for a wide range of applications including biomedical, automotive, aerospace, agriculture, energy, and environmental. This book refers to recent advances made in both academia and industry, in topics such as fiber-reinforced composites, fibrous thermal insulators, drug delivery and tissue engineering, and smart textiles and energy, and explains how fibrous structures are engineered to offer new solutions to important problems. The first two chapters provide basic introductory information to allow a wider range of readers to engage with the book. - Addresses hot emerging topics including smart materials, wearable energy harvesters, and solar fuel production - Includes valuable technical advice that is useful to industries including aerospace, biomedical, and energy - Covers the full lifecycle of the material, from processing and treatment through to end usage