Download Free Optical Metrology Book in PDF and EPUB Free Download. You can read online Optical Metrology and write the review.

Handbook of Optical Metrology: Principles and Applications begins by discussing key principles and techniques before exploring practical applications of optical metrology. Designed to provide beginners with an introduction to optical metrology without sacrificing academic rigor, this comprehensive text: Covers fundamentals of light sources, lenses, prisms, and mirrors, as well as optoelectronic sensors, optical devices, and optomechanical elements Addresses interferometry, holography, and speckle methods and applications Explains Moiré metrology and the optical heterodyne measurement method Delves into the specifics of diffraction, scattering, polarization, and near-field optics Considers applications for measuring length and size, displacement, straightness and parallelism, flatness, and three-dimensional shapes This new Second Edition is fully revised to reflect the latest developments. It also includes four new chapters—nearly 100 pages—on optical coherence tomography for industrial applications, interference microscopy for surface structure analysis, noncontact dimensional and profile metrology by video measurement, and optical metrology in manufacturing technology.
New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping. * New introductory sections to all chapters. * Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry. * Thorough coverage of the CCD camera.
Introduction to Optical Metrology examines the theory and practice of various measurement methodologies utilizing the wave nature of light. The book begins by introducing the subject of optics, and then addresses the propagation of laser beams through free space and optical systems. After explaining how a Gaussian beam propagates, how to set up a collimator to get a collimated beam for experimentation, and how to detect and record optical signals, the text: Discusses interferometry, speckle metrology, moiré phenomenon, photoelasticity, and microscopy Describes the different principles used to measure the refractive indices of solids, liquids, and gases Presents methods for measuring curvature, focal length, angle, thickness, velocity, pressure, and length Details techniques for optical testing as well as for making fiber optic- and MEMS-based measurements Depicts a wave propagating in the positive z-direction by ei(ωt – kz), as opposed to ei(kz – ωt) Featuring exercise problems at the end of each chapter, Introduction to Optical Metrology provides an applied understanding of essential optical measurement concepts, techniques, and procedures.
Optical Metrology is a rapidly expanding field i'n both its scientific foundations and technological developments, being of major concern to measurements, quality control, non-destructive tes ting and in fundamental research. In order to define the state-of-the-art, and to evaluate pre sent accomplishments, whilst giving an appraisal of how each of the particular topics will evolve the Optical Metrology-anAdvancedStudy Institute was organized with a concourse of the world's acknowledged experts. Thus, the Institute provided a forum for tutorial reviews blended with topics of current research in the form of a progressive and comprehensive presentation of recent promising developments, lea ding techniques and instrumentation in incoherent and coherent optics for Metrology, Sensing and Control in Science, Industry and Biomedici ne. Optical Metrology is a very broad field which is highly inter disciplinary in its applications, and in its scientific and technolo gical background. It is related to such diverse disciplines as physi cal and chemical sciences, engineering, electronics, computer scien ces, biological sciences and theoretical sciences, such as statistics. Although there was an emphasis on photomechanics and industri al applications, a marked diversity was reflected in the different background and interests of the participants. The vitality and viabi lity of the discipline was enhanced not only by the encouraging number of young scientists and industrialists participating and authoring, but also by the remarkably promising prospects found in x the practical applications supported by advanced electronic hybridi zation.
Provides basic explanations of the operation and application of the most common methods in the field and in commercial use. The first half of the book presents a working knowledge of the mechanism and limitations of optical dimensional measurement methods. The book concludes with a series of manufacturing application examples.
Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods
A one-stop, concise guide on determining and measuring thin film thickness by optical methods. This practical book covers the laws of electromagnetic radiation and interaction of light with matter, as well as the theory and practice of thickness measurement, and modern applications. In so doing, it shows the capabilities and opportunities of optical thickness determination and discusses the strengths and weaknesses of measurement devices along with their evaluation methods. Following an introduction to the topic, Chapter 2 presents the basics of the propagation of light and other electromagnetic radiation in space and matter. The main topic of this book, the determination of the thickness of a layer in a layer stack by measuring the spectral reflectance or transmittance, is treated in the following three chapters. The color of thin layers is discussed in chapter 6. Finally, in chapter 7, the author discusses several industrial applications of the layer thickness measurement, including high-reflection and anti-reflection coatings, photolithographic structuring of semiconductors, silicon on insulator, transparent conductive films, oxides and polymers, thin film photovoltaics, and heavily doped silicon. Aimed at industrial and academic researchers, engineers, developers and manufacturers involved in all areas of optical layer and thin optical film measurement and metrology, process control, real-time monitoring, and applications.
The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such as spectral response, detuning and signal-to-noise robustness, harmonic rejection, etc.
The measurement and characterisation of surface topography is crucial to modern manufacturing industry. The control of areal surface structure allows a manufacturer to radically alter the functionality of a part. Examples include structuring to effect fluidics, optics, tribology, aerodynamics and biology. To control such manufacturing methods requires measurement strategies. There is now a large range of new optical techniques on the market, or being developed in academia, that can measure areal surface topography. Each method has its strong points and limitations. The book starts with introductory chapters on optical instruments, their common language, generic features and limitations, and their calibration. Each type of modern optical instrument is described (in a common format) by an expert in the field. The book is intended for both industrial and academic scientists and engineers, and will be useful for undergraduate and postgraduate studies.
Introduction to Optical Metrology examines the theory and practice of various measurement methodologies utilizing the wave nature of light. The book begins by introducing the subject of optics, and then addresses the propagation of laser beams through free space and optical systems. After explaining how a Gaussian beam propagates, how to set up a collimator to get a collimated beam for experimentation, and how to detect and record optical signals, the text: Discusses interferometry, speckle metrology, moiré phenomenon, photoelasticity, and microscopy Describes the different principles used to measure the refractive indices of solids, liquids, and gases Presents methods for measuring curvature, focal length, angle, thickness, velocity, pressure, and length Details techniques for optical testing as well as for making fiber optic- and MEMS-based measurements Depicts a wave propagating in the positive z-direction by ei(ωt – kz), as opposed to ei(kz – ωt) Featuring exercise problems at the end of each chapter, Introduction to Optical Metrology provides an applied understanding of essential optical measurement concepts, techniques, and procedures.