Download Free Optical Imaging Sensors And Systems For Homeland Security Applications Book in PDF and EPUB Free Download. You can read online Optical Imaging Sensors And Systems For Homeland Security Applications and write the review.

Optical and photonic systems and devices have significant potential for homeland security. "Optical Imaging Sensors and Systems for Homeland Security Applications" presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers.
Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the last decade, as well as applications to experimental mechanics, material science, optical testing, and fringe analysis.
Homeland security and context In the Geographical Dimensions of Terrorism (GDOT) (Cutter et al. 2003), the first book after 9/11 to address homeland security and geography, we developed several thematic research agendas and explored intersections between geographic research and the importance of context, both geographical and political, in relationship to the concepts of terrorism and security. It is good to see that a great deal of new thought and research continues to flow from that initial research agenda, as illustrated by many of the papers of this new book, entitled Geospatial Technologies and Homeland Security: Research Frontiers and Future Challenges. Context is relevant not only to understanding homeland security issues broadly, but also to the conduct of research on geospatial technologies. It is impossible to understand the implications of a homeland security strategy, let alone hope to make predictions, conduct meaningful modeling and research, or assess the value and dangers of geospatial technologies, without consideration of overarching political, social, economic, and geographic contexts within which these questions are posed.
This book provides a clear and accessible introduction to the essential mathematical foundations of linear canonical transforms from a signals and systems perspective. Substantial attention is devoted to how these transforms relate to optical systems and wave propagation. There is extensive coverage of sampling theory and fast algorithms for numerically approximating the family of transforms. Chapters on topics ranging from digital holography to speckle metrology provide a window on the wide range of applications. This volume will serve as a reference for researchers in the fields of image and signal processing, wave propagation, optical information processing and holography, optical system design and modeling, and quantum optics. It will be of use to graduate students in physics and engineering, as well as for scientists in other areas seeking to learn more about this important yet relatively unfamiliar class of integral transformations.
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. The areas of application of this technique are in biomedicine, medicine, life sciences, nanotechnology and materials sciences.
This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. The book collects the results obtained in the last years by world scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art and also a view to future applications of those engineered and used materials in the field of photonics. The second edition covers the major aspects of ferroelectric domain engineering and combines basic research and latest updated applications such as challenging results by introducing either new as well as extended chapters on Photonics Crystals based on Lithium Niobate and Lithium Tantalate crystals; generation, visualization and controlling of THz radiation; latest achievements on Optical Parametric Oscillators for application in precise spectroscopy. Further more recent advancements in characterization by probe scanning microscopy and optical methods with device and technological orientation. A state-of-the-art report on periodically poled processes and their characterization methods are provided on different materials (LiNbO3, KTP) furnishing update research on ferroelectric crystal by extending materials research and applications.
Worldwide, Ovarian carcinoma continues to be responsible for more deaths than all other gynecologic malignancies combined. International leaders in the field address the critical biologic and basic science issues relevant to the disease. The book details the molecular biological aspects of ovarian cancer. It provides molecular biology techniques of understanding this cancer. The techniques are designed to determine tumor genetics, expression, and protein function, and to elucidate the genetic mechanisms by which gene and immunotherapies may be perfected. It provides an analysis of current research into aspects of malignant transformation, growth control, and metastasis. A comprehensive spectrum of topics is covered providing up to date information on scientific discoveries and management considerations.
The thesis presents an original and smart way to manipulate liquid and polymeric materials using a “pyro-fluidic platform” which exploits the pyro-electric effect activated onto a ferroelectric crystal. It describes a great variety of functionalities of the pyro-electrohydrodynamic platform, such as droplet self-assembling and dispensing, for manipulating multiphase liquids at the micro- and nanoscale. The thesis demonstrates the feasibility of non-contact self-assembling of liquids in plane (1D) using a micro engineered crystal, improving the dispensing capability and the smart transfer of material between two different planes (2D) and controlling and fabricating three-dimensional structures (3D). The thesis present the fabrication of highly integrated and automated ‘lab-on-a-chip’ systems based on microfluidics. The pyro-platform presented herein offers the great advantage of enabling the actuation of liquids in contact with a polar dielectric crystal through an electrode-less configuration. The simplicity and flexibility of the method for fabricating 3D polymer microstructures shows the great potential of the pyro-platform functionalities, exploitable in many fields, from optics to biosensing. In particular, this thesis reports the fabrication of optically active elements, such as nanodroplets, microlenses and microstructures, which have many potential applications in photonics. The capability for manipulating the samples of interest in a touch-less modality is very attractive for biological and chemical assays. Besides controlling cell growth and fate, smart micro-elements could deliver optical stimuli from and to cells monitoring their growth in real time, opening interesting perspectives for the realization of optically active scaffolds made of nanoengineered functional elements, thus paving the way to fascinating Optogenesis Studies.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
Electro-optical and infrared systems are fundamental in the military, medical, commercial, industrial, and private sectors. Systems Engineering and Analysis of Electro-Optical and Infrared Systems integrates solid fundamental systems engineering principles, methods, and techniques with the technical focus of contemporary electro-optical and infrared optics, imaging, and detection methodologies and systems. The book provides a running case study throughout that illustrates concepts and applies topics learned. It explores the benefits of a solid systems engineering-oriented approach focused on electro-optical and infrared systems. This book covers fundamental systems engineering principles as applied to optical systems, demonstrating how modern-day systems engineering methods, tools, and techniques can help you to optimally develop, support, and dispose of complex, optical systems. It introduces contemporary systems development paradigms such as model-based systems engineering, agile development, enterprise architecture methods, systems of systems, family of systems, rapid prototyping, and more. It focuses on the connection between the high-level systems engineering methodologies and detailed optical analytical methods to analyze, and understand optical systems performance capabilities. Organized into three distinct sections, the book covers modern, fundamental, and general systems engineering principles, methods, and techniques needed throughout an optical system’s development lifecycle (SDLC); optical systems building blocks that provide necessary optical systems analysis methods, techniques, and technical fundamentals; and an integrated case study that unites these two areas. It provides enough theory, analytical content, and technical depth that you will be able to analyze optical systems from both a systems and technical perspective.