Download Free Optical Digital Imaging Text Systems Book in PDF and EPUB Free Download. You can read online Optical Digital Imaging Text Systems and write the review.

An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.
A comprehensive and practical analysis and overview of the imaging chain through acquisition, processing and display The Handbook of Digital Imaging provides a coherent overview of the imaging science amalgam, focusing on the capture, storage and display of images. The volumes are arranged thematically to provide a seamless analysis of the imaging chain from source (image acquisition) to destination (image print/display). The coverage is planned to have a very practical orientation to provide a comprehensive source of information for practicing engineers designing and developing modern digital imaging systems. The content will be drawn from all aspects of digital imaging including optics, sensors, quality, control, colour encoding and decoding, compression, projection and display. Contains approximately 50 highly illustrated articles printed in full colour throughout Over 50 Contributors from Europe, US and Asia from academia and industry The 3 volumes are organized thematically for enhanced usability: Volume 1: Image Capture and Storage; Volume 2: Image Display and Reproduction, Hardcopy Technology, Halftoning and Physical Evaluation, Models for Halftone Reproduction; Volume 3: Imaging System Applications, Media Imaging, Remote Imaging, Medical and Forensic Imaging 3 Volumes www.handbookofdigitalimaging.com
The multi-billion dollar industry of digital imaging technology is an active research area with applications in our everyday lives in products such as digital cameras, scanners, printers and display systems. This book presents an introduction to the fundamentals of digital imaging, with emphasis on the basic operations of image capture and display of monochrome and colour images. The authors balance the mathematical description of real problems with practical examples. With a colour-plate section and real-world applications, this book is suitable for graduate students taking courses in digital imaging in electrical engineering and computer science departments. It will also be a useful reference for practitioners in industry.
This book provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers. The book concentrates mainly on two instruments: the Confocal Scanning Optical Microscope (CSOM), and the Optical Interference Microscope (OIM). A comprehensive discussion of the theory and design of the Near-Field Scanning Optical Microscope (NSOM) is also given. The text discusses the practical aspects of building a confocal scanning optical microscope or optical interference microscope, and the applications of these microscopes to phase imaging, biological imaging, and semiconductor inspection and metrology.A comprehensive theoretical discussion of the depth and transverse resolution is given with emphasis placed on the practical results of the theoretical calculations and how these can be used to help understand the operation of these microscopes. - Provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers - Explains many practical applications of scanning optical and interference microscopy in such diverse fields as biology and semiconductor metrology - Discusses in theoretical terms the origin of the improved depth and transverse resolution of scanning optical and interference microscopes with emphasis on the practical results of the theoretical calculations - Considers the practical aspects of building a confocal scanning or interference microscope and explores some of the design tradeoffs made for microscopes used in various applications - Discusses the theory and design of near-field optical microscopes - Explains phase imaging in the scanning optical and interference microscopes
In the past decade, the way image based media is created, disseminated, and shared has changed exponentially, as digital imaging technology has replaced traditional film based media.Digital Images for the Information Professional provides an overview of
Designing an efficient imaging system for biomedical optics requires a solid understanding of the special requirements of the optical systems for biomedical imaging and the optical components used in the systems. However, a lack of reference books on optical design (imaging and illumination) for biomedical imaging has led to some inefficient systems. This book fills the gap between biomedical optics and optical design by addressing the fundamentals of biomedical optics and optical engineering, and biomedical imaging systems. The first half provides a brief introduction to biomedical optics and then covers the fundamentals of optics, optical components, light sources, detectors, optical imaging system design, and illumination system design. This also includes important issues related to biomedical imaging, such as autofluorescence from optical materials. The second half of the text covers various biomedical imaging techniques and their optical systems, along with design examples.
First Published in 2005. Routledge is an imprint of Taylor & Francis, an informa company.