Download Free Optical Diagnostics And Sensing Xxi Book in PDF and EPUB Free Download. You can read online Optical Diagnostics And Sensing Xxi and write the review.

This interesting book covers latest aspects of a highly sophisticated technology; results treated in critical detail; demonstrates applicability of this technology to practical problems in process control, biochip methods, clinical analysis, environmental sciences
This authoritative text/reference presents a comprehensive review of algorithms and techniques for face recognition (FR), with an emphasis on systems that can be reliably used in operational environments. Insights are provided by an international team of pre-eminent experts into the processing of multispectral and hyperspectral face images captured under uncontrolled environments. These discussions cover a variety of imaging sensors ranging from state-of-the-art visible and infrared imaging sensors, to RGB-D and mobile phone image sensors. A range of different biometric modalities are also examined, including face, periocular and iris. This timely volume is a mine of useful information for researchers, practitioners and students involved in image processing, computer vision, biometrics and security.
Structural health monitoring (SHM) has attracted more attention during the last few decades in many engineering fields with the main aim of avoiding structural disastrous events. This aim is achieved by using advanced sensing techniques and further data processing. SHM has experienced booming advancements during recent years due to the developments in sensing techniques. The reliable operation of current, sophisticated, man-made structures drives the development of incipient reliable damage diagnosis and assessment. This book aims to illustrate the background and applications of SHM from both sensing and processing approaches. Its main objective is to summarize the advantages and disadvantages of SHM methodologies and their applications, which may provide a new perspective in understanding SHM for readers from diverse engineering fields.
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
Includes Proceedings Vol. 7821
Although noninvasive, continuous monitoring of glucose concentration in blood and tissues is one of the most challenging areas in medicine, a wide range of optical techniques has recently been designed to help develop robust noninvasive methods for glucose sensing. For the first time in book form, the Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues analyzes trends in noninvasive optical glucose sensing and discusses its impact on tissue optical properties. This handbook presents methods that improve the accuracy in glucose prediction based on infrared absorption spectroscopy, recent studies on the influence of acute hyperglycemia on cerebral blood flow, and the correlation between diabetes and the thermo-optical response of human skin. It examines skin glucose monitoring by near-infrared spectroscopy (NIR), fluorescence-based glucose biosensors, and a photonic crystal contact lens sensor. The contributors also explore problems of polarimetric glucose sensing in transparent and turbid tissues as well as offer a high-resolution optical technique for noninvasive, continuous, and accurate blood glucose monitoring and glucose diffusion measurement. Written by world-renowned experts in biomedical optics and biophotonics, this book gives a complete, state-of-the-art treatise on the design and applications of noninvasive optical methods and instruments for glucose sensing.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.