Download Free Optical Diagnostics And Sensing Xvii Toward Point Of Care Diagnostics Book in PDF and EPUB Free Download. You can read online Optical Diagnostics And Sensing Xvii Toward Point Of Care Diagnostics and write the review.

This book is a comprehensive collection of chapters focusing on the core areas of computing and their further applications in the real world. Each chapter is a paper presented at the Computing Conference 2021 held on 15-16 July 2021. Computing 2021 attracted a total of 638 submissions which underwent a double-blind peer review process. Of those 638 submissions, 235 submissions have been selected to be included in this book. The goal of this conference is to give a platform to researchers with fundamental contributions and to be a premier venue for academic and industry practitioners to share new ideas and development experiences. We hope that readers find this volume interesting and valuable as it provides the state-of-the-art intelligent methods and techniques for solving real-world problems. We also expect that the conference and its publications is a trigger for further related research and technology improvements in this important subject.
Medical Biosensors for Point of Care (POC) Applications discusses advances in this important and emerging field which has the potential to transform patient diagnosis and care. Part 1 covers the fundamentals of medical biosensors for point-of-care applications. Chapters in part 2 go on to look at materials and fabrication of medical biosensors while the next part looks at different technologies and operational techniques. The final set of chapters provide an overview of the current applications of this technology. Traditionally medical diagnostics have been dependent on sophisticated technologies which only trained professionals were able to operate. Recent research has focused on creating point-of-care diagnostic tools. These biosensors are miniaturised, portable, and are designed to be used at the point-of-care by untrained individuals, providing real-time and remote health monitoring. - Provides essential knowledge for designers and manufacturers of biosensors for point-of-care applications - Provides comprehensive coverage of the fundamentals, materials, technologies, and applications of medical biosensors for point-of-care applications - Includes contributions from leading international researchers with extensive experience in developing medical biosensors - Discusses advances in this important and emerging field which has the potential to transform patient diagnosis and care
International Academic Conference in Prague 2019
The accessibility of the skin in vivo has resulted in the development of non-invasive methods in the past 40 years that offer accurate measurements of skin properties and structures from microscopic to macroscopic levels. However, the mechanisms involved in these properties are still only partly understood. Similar to many other domains, including biomedical engineering, numerical modeling has appeared as a complementary key actor for improving our knowledge of skin physiology. This book presents, for the first time, the contributions that focus on scientific computing and numerical modeling to offer a deeper understanding of the mechanisms involved in skin physiology. The book is structured around some skin properties and functions, including optical and biomechanical properties and skin barrier function and homeostasis, with—for each of them—several chapters that describe either biological or physical models at different scales.
Vital signs, such as heart rate and respiration rate, are useful to health monitoring because they can provide important physiological insights for medical diagnosis and well-being management. Most traditional methods for measuring vital signs require a person to wear biomedical devices, such as a capnometer, a pulse oximeter, or an electrocardiogram sensor. These contact-based technologies are inconvenient, cumbersome, and uncomfortable to use. There is a compelling need for technologies that enable contact-free, easily deployable, and long-term monitoring of vital signs for healthcare. Contactless Vital Signs Monitoring presents a systematic and in-depth review on the principles, methodologies, and opportunities of using different wavelengths of an electromagnetic spectrum to measure vital signs from the human face and body contactlessly. The volume brings together pioneering researchers active in the field to report the latest progress made, in an intensive and structured way. It also presents various healthcare applications using camera and radio frequency-based monitoring, from clinical care to home care, to sport training and automotive, such as patient/neonatal monitoring in intensive care units, general wards, emergency department triage, MR/CT cardiac and respiratory gating, sleep centers, baby/elderly care, fitness cardio training, driver monitoring in automotive settings, and more. This book will be an important educational source for biomedical researchers, AI healthcare researchers, computer vision researchers, wireless-sensing researchers, doctors/clinicians, physicians/psychologists, and medical equipment manufacturers. - Includes various contactless vital signs monitoring techniques, such as optical-based, radar-based, WiFi-based, RFID-based, and acoustic-based methods. - Presents a thorough introduction to the measurement principles, methodologies, healthcare applications, hardware set-ups, and systems for contactless measurement of vital signs using camera or RF sensors. - Presents the opportunities for the fusion of camera and RF sensors for contactless vital signs monitoring and healthcare.
Reliable, precise and accurate detection and analysis of biomarkers remains a significant challenge for clinical researchers. Methods for the detection of biomarkers are rather complex, requiring pre-treatment steps before analysis can take place. Moreover, comparing various biomarker assays and tracing research progress in this area systematically is a challenge for researchers. The Detection of Biomarkers presents developments in biomarker detection, including methods tools and strategies, biosensor design, materials, and applications. The book presents methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical, and therefore highly practical for use in clinical research scenarios. This volume situates biomarker detection in its research context and sets out future prospects for the area. Its 20 chapters offer a comprehensive coverage of biomarkers, including progress on nanotechnology, biosensor types, synthesis, immobilization, and applications in various fields. The book also demonstrates, for students, how to synthesize and immobilize biosensors for biomarker assay. It offers researchers real alternative and innovative ways to think about the field of biomarker detection, increasing the reliability, precision and accuracy of biomarker detection. - Locates biomarker detection in its research context, setting out present and future prospects - Allows clinical researchers to compare various biomarker assays systematically - Presents new methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical - Gives innovative biomarker assays that are viable alternatives to current complex methods - Helps clinical researchers who need reliable, precise and accurate biomarker detection methods
This book reviews existing sensor technologies that are now being coupled with computational intelligence for the remote monitoring of physical activity and ex vivo biosignatures. In today’s frenetic world, consumers are becoming ever more demanding: they want to control every aspect of their lives and look for options specifically tailored to their individual needs. In many cases, suppliers are catering to these new demands; as a result, clothing, food, social media, fitness and banking services are all being democratised to the individual. Healthcare provision has finally caught up to this trend and is currently being rebooted to offer personalised solutions, while simultaneously creating a more effective, scalable and cost-effective system for all. The desire for personalisation, home monitoring and treatment, and provision of care in remote locations or in emerging and impoverished nations that lack a fixed infrastructure, is leading to the realisation that mobile technology might be the best candidate for achieving these goals. A combination of several technological, healthcare and financial factors are driving this trend to create a new healthcare model that stresses preventative ‘health-care’ rather than ‘sick-care’, and a shift from volume to value. Mobile healthcare (mhealth), which could also be termed the “internet of people”, refers to the integration of sensors and smartphones to gather and interpret clinical data from patients in real-time. Most importantly, with an ageing population suffering multiple morbidities, mhealth could provide healthcare solutions to enhance chronically ill patients’ quality of life.