Download Free Optical Design Of Microscopes Book in PDF and EPUB Free Download. You can read online Optical Design Of Microscopes and write the review.

Knowledge of microscope design is rapidly becoming more important. Microscopes are used in critical applications such as drug development, clinical tests, and genomics. Considerable expertise is required for the evaluation, design, and manufacture of these instruments. Several subsystems must be integrated: the source, the illumination optics, the specimen, the objective lens, the tube optics, and the sensor. The large numerical aperture of a microscope is essential for small spot size and high brightness; however, the large numerical aperture also presents difficult issues in optical design and fabrication. This book provides a foundation for developing design expertise through education, practice, and exploration. It is suitable for lens designers, optical engineers, and students with a basic knowledge of microscope structure.
Infused with more than 500 tables and figures, this reference clearly illustrates the intricacies of optical system design and evaluation and considers key aspects of component selection, optimization, and integration for the development of effective optical apparatus. The book provides a much-needed update on the vanguard in the field with vivid e
This book provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers. The book concentrates mainly on two instruments: the Confocal Scanning Optical Microscope (CSOM), and the Optical Interference Microscope (OIM). A comprehensive discussion of the theory and design of the Near-Field Scanning Optical Microscope (NSOM) is also given. The text discusses the practical aspects of building a confocal scanning optical microscope or optical interference microscope, and the applications of these microscopes to phase imaging, biological imaging, and semiconductor inspection and metrology.A comprehensive theoretical discussion of the depth and transverse resolution is given with emphasis placed on the practical results of the theoretical calculations and how these can be used to help understand the operation of these microscopes. - Provides a comprehensive introduction to the field of scanning optical microscopy for scientists and engineers - Explains many practical applications of scanning optical and interference microscopy in such diverse fields as biology and semiconductor metrology - Discusses in theoretical terms the origin of the improved depth and transverse resolution of scanning optical and interference microscopes with emphasis on the practical results of the theoretical calculations - Considers the practical aspects of building a confocal scanning or interference microscope and explores some of the design tradeoffs made for microscopes used in various applications - Discusses the theory and design of near-field optical microscopes - Explains phase imaging in the scanning optical and interference microscopes
A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.
The process of designing lenses is both an art and a science. While advances in the field over the past two centuries have done much to transform it from the former category to the latter, much of the lens design process remains encapsulated in the experience and knowledge of industry veterans. This SPIE Field Guide provides a working reference for practicing physicists, engineers, and scientists for deciphering the nuances of basic lens design.
The Evolution of the Microscope covers some of the features of the history of the microscope and the rationale of the design features found in microscopes. The book discusses the first microscopes, the compound microscope in England (1650-1750), simple or single-lens microscopes, and the development of the achromatic microscope. The text also describes the microscope in Victorian times as well as the optical microscope since 1880. The search for greater resolving power such as the ultra-violet and electron microscopes is considered. Scientists and microscopists will find the book invaluable.
Since Sorby published his observations on the structures of steels in 1863, the optical microscope has become one of the most widely used and versatile instruments for examining the structures of engineering materials. Moreover, to examine the diverse range of materials encountered, it must be used in both the reflected-light and transmitted-light forms, and with polarized light. It is complementary to, but not superseded by, the wide range of electron-optical instruments that are now used. Despite its extensive use, it has been described as the most misused, abused, and misunderstood of scientific instruments, for it will produce an image of a sort no matter how badly it is used. To use it effectively, even in its simplest applications, a knowledge of the simple theory of the microscope is necessary, for the theory shows and explains how it should be used. Thus my aim has been to give a simple and, where possible, quantitative account of both the theory and the use of the microscope, including the various special techniques for which it can be used. But, no matter how effectively the microscope is used, if the specimen is inadequately prepared the results of examination will be of doubtful value.
This guide provides extensive coverage of microscopic imaging principles. After reviewing the main principles of image formation, diffraction, interference, and polarization used in microscopy, this guide describes the most widely applied microscope configurations and applications. It also covers major system components, including light sources, illumination layouts, microscope optics, and image detection electronics. This guide also provides a comprehensive overview of microscopy techniques, including bright field and dark field imaging, contrast enhancement methods (such as phase and amplitude contrast), DIC, polarization, and fluorescence microscopy. In addition, it describes scanning techniques (such as confocal and multiphoton imaging points); new trends in super-resolution methods (such as 4Pi microscopy, STED, STORM, and structured illumination); and array microscopy, CARS, and SPIM.
The purpose of this book is to provide the most comprehensive, easy-to-use, and informative guide on light microscopy. Light and Video Microscopy will prepare the reader for the accurate interpretation of an image and understanding of the living cell. With the presentation of geometrical optics, it will assist the reader in understanding image formation and light movement within the microscope. It also provides an explanation of the basic modes of light microscopy and the components of modern electronic imaging systems and guides the reader in determining the physicochemical information of living and developing cells, which influence interpretation. - Brings together mathematics, physics, and biology to provide a broad and deep understanding of the light microscope - Clearly develops all ideas from historical and logical foundations - Laboratory exercises included to assist the reader with practical applications - Microscope discussions include: bright field microscope, dark field microscope, oblique illumination, phase-contrast microscope, photomicrography, fluorescence microscope, polarization microscope, interference microscope, differential interference microscope, and modulation contrast microscope
Introduces readers to the enlightening world of the modern light microscope There have been rapid advances in science and technology over the last decade, and the light microscope, together with the information that it gives about the image, has changed too. Yet the fundamental principles of setting up and using a microscope rests upon unchanging physical principles that have been understood for years. This informative, practical, full-colour guide fills the gap between specialised edited texts on detailed research topics, and introductory books, which concentrate on an optical approach to the light microscope. It also provides comprehensive coverage of confocal microscopy, which has revolutionised light microscopy over the last few decades. Written to help the reader understand, set up, and use the often very expensive and complex modern research light microscope properly, Understanding Light Microscopy keeps mathematical formulae to a minimum—containing and explaining them within boxes in the text. Chapters provide in-depth coverage of basic microscope optics and design; ergonomics; illumination; diffraction and image formation; reflected-light, polarised-light, and fluorescence microscopy; deconvolution; TIRF microscopy; FRAP & FRET; super-resolution techniques; biological and materials specimen preparation; and more. Gives a didactic introduction to the light microscope Encourages readers to use advanced fluorescence and confocal microscopes within a research institute or core microscopy facility Features full-colour illustrations and workable practical protocols Understanding Light Microscopy is intended for any scientist who wishes to understand and use a modern light microscope. It is also ideal as supporting material for a formal taught course, or for individual students to learn the key aspects of light microscopy through their own study.