Download Free Optical Coatings Book in PDF and EPUB Free Download. You can read online Optical Coatings and write the review.

Optical coatings, i.e. multilayer stacks composed from a certain number of thin individual layers, are an essential part of any optical system necessary to tailor the properties of the optical surfaces. Hereby, the performance of any optical coating is defined by a well-balanced interplay between the properties of the individual coating materials and the geometrical parameters (such as film thickness) which define their arrangement. In all scientific books dealing with the performance of optical coatings, the main focus is on optimizing the geometrical coating parameters, particularly the number of individual layers and their thickness. At the same time, much less attention is paid to another degree of freedom in coating design, namely the possibility to tailor optical material properties to an optimum relevant for the required specification. This book, on the contrary, concentrates on the material aside of the problem. After a comprehensive review of the basics of thin film theory, traditional optical coating material properties and their relation to the efficiency of coating design methods, emphasis is placed on novel results concerning the application of material mixtures and nanostructured coatings in optical coating theory and practice, including porous layers, dielectric mixtures as well as metal island films for different applications.
Optical Thin Films and Coatings: From Materials to Applications, Second Edition, provides an overview of thin film materials and their properties, design and manufacture across a wide variety of application areas. Sections explore their design and manufacture and their unconventional features, including the scattering properties of random structures in thin films, optical properties at short wavelengths, thermal properties and color effects. Other chapters focus on novel materials, including organic optical coatings, surface multiplasmonics, optical thin films containing quantum dots, and optical coatings, including laser components, solar cells, displays and lighting, and architectural and automotive glass. The book presents a technical resource for researchers and engineers working with optical thin films and coatings. It is also ideal for professionals in the security, automotive, space and other industries who need an understanding of the topic. - Provides thorough review of applications of optical coatings including laser components, solar cells, glazing, displays and lighting - One-stop reference that addresses deposition techniques, properties, and applications of optical thin films and coatings - Novel methods, suggestions for analysis, and applications makes this a valuable resource for experts in the field as well
Baumeister organizes this book around the key subjects associated with functions of optical thin film performance, and provides a valuable resource in the field of thin film technology. The information is widely backed up with citations to patents and published literature. The author draws from 25 years of experience teaching classes at the UCLA Extension Program, and at companies worldwide to answer questions, such as: what are the conventions for a given analysis formalism? and, what other design approaches have been tried for this application?
Designed to give a concise but complete overview of the field, this book features contributions written by leading experts in the various areas. Topics include design, materials, film growth, deposition including large area, characterization and monitoring, and mechanical stress.
Thermal noise from optical coatings is a growing area of concern and overcoming limits to the sensitivity of high precision measurements by thermal noise is one of the greatest challenges faced by experimental physicists. In this timely book, internationally renowned scientists and engineers examine our current theoretical and experimental understanding. Beginning with the theory of thermal noise in mirrors and substrates, subsequent chapters discuss the technology of depositing coatings and state-of-the-art dielectric coating techniques used in precision measurement. Applications and remedies for noise reduction are also covered. Individual chapters are dedicated to specific fields where coating thermal noise is a particular concern, including the areas of quantum optics/optomechanics, gravitational wave detection, precision timing, high-precision laser stabilisation via optical cavities and cavity quantum electrodynamics. While providing full mathematical detail, the text avoids field-specific jargon, making it a valuable resource for readers with varied backgrounds in modern optics.
Practical, user-oriented reference for engineers who must incorporate and specify coatings for filters, antiglare effects, polarization, or other purposes in optical or electro-optical systems design. It focuses on preparation techniques and characteristics of commercially available products and provides information needed to determine what type of filter is needed to solve a particular problem, what its limitations are, and how to care for it.
A theoretical, self-contained study of periodic multilayers and how they can be effectively exploited in both traditional and modern applications.
This Spotlight gives a general overview of the durability of optical coatings and various durability tests referring to available civilian and military standards and specifications. It will allow a quick detection of the coating testing durability requirements and test conditions in MIL-Specs and other standards or specifications according to requirements defined in the relevant drawings or coating specifications. Intended for optical designers, this Spotlight is also useful for optical coating inspectors.