Download Free Operator Theory In Different Settings And Related Applications Book in PDF and EPUB Free Download. You can read online Operator Theory In Different Settings And Related Applications and write the review.

This book provides a selection of reports and survey articles on the latest research in the area of single and multivariable operator theory and related fields. The latter include singular integral equations, ordinary and partial differential equations, complex analysis, numerical linear algebra, and real algebraic geometry – all of which were among the topics presented at the 26th International Workshop in Operator Theory and its Applications, held in Tbilisi, Georgia, in the summer of 2015. Moreover, the volume includes three special commemorative articles. One of them is dedicated to the memory of Leiba Rodman, another to Murray Marshall, and a third to Boris Khvedelidze, an outstanding Georgian mathematician and one of the founding fathers of the theory of singular integral equations. The book will be of interest to a broad range of mathematicians, from graduate students to researchers, whose primary interests lie in operator theory, complex analysis and applications, as well as specialists in mathematical physics.
This concise monograph explores how core ideas in Hardy space function theory and operator theory continue to be useful and informative in new settings, leading to new insights for noncommutative multivariable operator theory. Beginning with a review of the confluence of system theory ideas and reproducing kernel techniques, the book then covers representations of backward-shift-invariant subspaces in the Hardy space as ranges of observability operators, and representations for forward-shift-invariant subspaces via a Beurling–Lax representer equal to the transfer function of the linear system. This pair of backward-shift-invariant and forward-shift-invariant subspace form a generalized orthogonal decomposition of the ambient Hardy space. All this leads to the de Branges–Rovnyak model theory and characteristic operator function for a Hilbert space contraction operator. The chapters that follow generalize the system theory and reproducing kernel techniques to enable an extension of the ideas above to weighted Bergman space multivariable settings.
This concise volume shows how ideas from function and systems theory lead to new insights for noncommutative multivariable operator theory.
This volume is dedicated to Rien Kaashoek on the occasion of his 80th birthday and celebrates his many contributions to the field of operator theory during more than fifty years. In the first part of the volume, biographical information and personal accounts on the life of Rien Kaashoek are presented. Eighteen research papers by friends and colleagues of Rien Kaashoek are included in the second part. Contributions by J. Agler, Z.A. Lykova, N.J. Young, J.A. Ball, G.J. Groenewald, S. ter Horst, H. Bart, T. Ehrhardt, B. Silbermann, J.M. Bogoya, S.M. Grudsky, I.S. Malysheva, A. Böttcher, E. Wegert, Z. Zhou, Y. Eidelman, I. Haimovici, A.E. Frazho, A.C.M. Ran, B. Fritzsche, B. Kirstein, C.Madler, J. J. Jaftha, D.B. Janse van Rensburg, P. Junghanns, R. Kaiser, J. Nemcova, M. Petreczky, J.H. van Schuppen, L. Plevnik, P. Semrl, A. Sakhnovich, F.-O. Speck, S. Sremac, H.J. Woerdeman, H. Wolkowicz and N. Vasilevski.
This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich’s mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Mädler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).
This book celebrates Professor Thanos Antoulas's 70th birthday, marking his fundamental contributions to systems and control theory, especially model reduction and, more recently, data-driven modeling and system identification. Model reduction is a prominent research topic with wide ranging scientific and engineering applications.
This monograph, aimed at graduate students and researchers, explores the use of Hilbert space methods in function theory. Explaining how operator theory interacts with function theory in one and several variables, the authors journey from an accessible explanation of the techniques to their uses in cutting edge research.
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They have essential applications in other fields of mathematics and engineering. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins—the Bergman space A2, the Dirichlet space D, the model subspaces Kt, and the de Branges-Rovnyak spaces H(b)—have also garnered attention in recent decades. Leading experts on function spaces gathered and discussed new achievements and future venues of research on analytic function spaces, their operators, and their applications in other domains. With over 250 hours of lectures by prominent mathematicians, the program spanned a wide variety of topics. More explicitly, there were courses and workshops on Interpolation and Sampling, Riesz Bases, Frames and Signal Processing, Bounded Mean Oscillation, de Branges-Rovnyak Spaces, Blaschke Products and Inner Functions, and Convergence of Scattering Data and Non-linear Fourier Transform, among others. At the end of each week, there was a high-profile colloquium talk on the current topic. The program also contained two advanced courses on Schramm Loewner Evolution and Lattice Models and Reproducing Kernel Hilbert Space of Analytic Functions. This volume features the courses given on Hardy Spaces, Dirichlet Spaces, Bergman Spaces, Model Spaces, Operators on Function Spaces, Truncated Toeplitz Operators, Semigroups of weighted composition operators on spaces of holomorphic functions, the Corona Problem, Non-commutative Function Theory, and Drury-Arveson Space. This volume is a valuable resource for researchers interested in analytic function spaces.