Download Free Operation Of Restructured Power Systems Book in PDF and EPUB Free Download. You can read online Operation Of Restructured Power Systems and write the review.

Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate. In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements. It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-a-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful.
Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate. In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements. It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-a-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful.
Deregulation is a fairly new paradigm in the electric power industry. And just as in the case of other industries where it has been introduced, the goal of deregulation is to enhance competition and bring consumers new choices and economic benefits. The process has, obviously, necessitated reformulation of established models of power system operation and control activities. Similarly, issues such as system reliability, control, security and power quality in this new environment have come in for scrutiny and debate. In this book, we attempt to present a comprehensive overview of the deregulation process that has developed till now, focussing on the operation aspects. As of now, restructured electricity markets have been established in various degrees and forms in many countries. This book comes at a time when the deregulation process is poised to undergo further rapid advancements. It is envisaged that the reader will benefit by way of an enhanced understanding of power system operations in the conventional vertically integrated environment vis-a-vis the deregulated environment. The book is aimed at a wide range of audience- electric utility personnel involved in scheduling, dispatch, grid operations and related activities, personnel involved in energy trading businesses and electricity markets, institutions involved in energy sector financing. Power engineers, energy economists, researchers in utilities and universities should find the treatment of mathematical models as well as emphasis on recent research work helpful.
The overall goal of this book is to introduce algorithms for improving the economic posture of a utility company in a restructured power system by promoting cost-effective maintenance schedules. Today, cutting operations and maintenance (O&M) costs and preserving service reliability) are among the top priorities for managers ofutility companies. Preventive maintenance is perhaps the single largest controllable cost ofa utility2 operation. It is perceived that a careful planning and a good coordination among self-interested entities in a restructured power system are essential to achieving an optimal trade-off between the cost ofmaintenance and the service reliability. Traditional maintenance programs in verticall/ integrated utilities relied heavily on time-directed maintenance and manufacturer recommendations. This book offers a logical alternative to traditional electric utility maintenance practices and a basis for maintenance decisions. The book is organized as follows. Chapter I reviews various issues related to the power system operation and presents the role of restructuring in maintenance scheduling. In Chapter II, fundamental topics related to linear and nonlinear systems are reviewed. The duality in linear programming is discussed and integer programming is reviewed. Benders decomposition, Lagrangian relaxation, and Dantzig-Wolfe decomposition are presented. Several examples are given to demonstrate the applications ofdifferent methods. The formulation ofreactive power optimization is discussed which will be used again in Chapter VII.
An examination of key issues in electric utilities restructuring. It covers: electric utility markets in and out of the USA; the Open Access Same-time Information System; tagging transactions; trading energy; hedging tools for managing risks in various markets; pricing volatility, risk and forecasting; regional transmission organization; and more. The text contains acronyms, a contract specifications sample, examples, and nearly 500 bibliographic citations, tables, and drawings.
`Electric energy must be treated as a commodity which can be bought, sold, and traded, taking into account its time- and space-varying values and costs.` Spot Pricing of Electricity, Schweppe et al, 1988. Computational Auction Mechanisms for Restructured Power Industry Operation outlines the application of auction methods for all aspects of power system operation, primarily for a competitive environment. A complete description of the industry structure as well as the various markets now being formed is given. A thorough introduction to auction basics is included to explain how auctions have grown in other industries. Auction methods are compared to classical techniques for power system analysis, operations, and planning. The traditional applications of economic dispatch, optimal power flow and unit commitment are compared to auction mechanisms. Algorithms for auctions using linearized power flow equations, DC power flow equations, and AC power flow equations are included. The bundling of supportive services, known as ancillary services within the United States, is discussed. Extensions to the basic auction algorithms for inclusion of supportive services as well as algorithms for scheduling and bidding on generation for GENCOs or independent power producers are presented. Algorithms for scheduling and contracting with customers are also presented for energy service companies. An introduction to the various commodity and financial market products includes the use of futures and options for GENCOs. The material is useful for students performing research on the new business environment based on competition. Regulators will find information on initial methods of designing and evaluating market systems, and power exchange and financial analysts will find information on the interdependence of markets and power system-based techniques for risk management. This information compares the new business environment solutions with old business environment solutions. Computational Auction Mechanisms for Restructured Power Industry Operation provides a first introduction to how electricity will be traded as a commodity in the future.
The latest practical applications of electricity market equilibrium models in analyzing electricity markets Electricity market deregulation is driving the power energy production from a monopolistic structure into a competitive market environment. The development of electricity markets has necessitated the need to analyze market behavior and power. Restructured Electric Power Systems reviews the latest developments in electricity market equilibrium models and discusses the application of such models in the practical analysis and assessment of electricity markets. Drawing upon the extensive involvement in the research and industrial development of the leading experts in the subject area, the book starts by explaining the current developments of electrical power systems towards smart grids and then relates the operation and control technologies to the aspects in electricity markets. It explores: The problems of electricity market behavior and market power Mathematical programs with equilibrium constraints (MPEC) and equilibrium problems with equilibrium constraints (EPEC) Tools and techniques for solving the electricity market equilibrium problems Various electricity market equilibrium models State-of-the-art techniques for computing the electricity market equilibrium problems The application of electricity market equilibrium models in assessing the economic benefits of transmission expansions for market environments, forward and spot markets, short-term power system security, and analysis of reactive power impact Also featured are computational resources to allow readers to develop algorithms on their own, as well as future research directions in modeling and computational techniques in electricity market analysis. Restructured Electric Power Systems is an invaluable reference for electrical engineers and power system economists from power utilities and for professors, postgraduate students, and undergraduate students in electrical power engineering, as well as those responsible for the design, engineering, research, and development of competitive electricity markets and electricity market policy.
The electric power industry in the U.S. has undergone dramatic changes in recent years. Tight regulations enacted in the 1970's and then de-regulation in the 90's have transformed it from a technology-driven industry into one driven by public policy requirements and the open-access market. Now, just as the utility companies must change to ensure their survival, engineers and other professionals in the industry must acquire new skills, adopt new attitudes, and accommodate other disciplines. Power System Operations and Electricity Markets provides the information engineers need to understand and meet the challenges of the new competitive environment. Integrating the business and technical aspects of the restructured power industry, it explains, clearly and succinctly, how new methods for power systems operations and energy marketing relate to public policy, regulation, economics, and engineering science. The authors examine the technologies and techniques currently in use and lay the groundwork for the coming era of unbundling, open access, power marketing, self-generation, and regional transmission operations. The rapid, massive changes in the electric power industry and in the economy have rendered most books on the subject obsolete. Based on the authors' years of front-line experience in the industry and in regulatory organizations, Power System Operations and Electricity Markets is current, insightful, and complete with Web links that will help readers stay up to date.
This useful reference allows readers to compare and learn from best-practice and up-to-date information in this exciting field from Europe, the US and Australia. It shows how to overcome day-to-day and strategic engineering problems, rather than concentrating on policy and market-structural issues.
Applied Mathematics for Restructured Electric Power Systems: Optimization, Control, and Computational Intelligence consists of chapters based on work presented at a National Science Foundation workshop organized in November 2003. The theme of the workshop was the use of applied mathematics to solve challenging power system problems. The areas included control, optimization, and computational intelligence. In addition to the introductory chapter, this book includes 12 chapters written by renowned experts in their respected fields. Each chapter follows a three-part format: (1) a description of an important power system problem or problems, (2) the current practice and/or particular research approaches, and (3) future research directions. Collectively, the technical areas discussed are voltage and oscillatory stability, power system security margins, hierarchical and decentralized control, stability monitoring, embedded optimization, neural network control with adaptive critic architecture, control tuning using genetic algorithms, and load forecasting and component prediction. This volume is intended for power systems researchers and professionals charged with solving electric and power system problems.