Download Free Openmp In The Petascale Era Book in PDF and EPUB Free Download. You can read online Openmp In The Petascale Era and write the review.

This book constitutes the refereed proceedings of the 7th International Workshop on OpenMP, IWOMP 2011, held in Chicago, IL, USA in June 2011. The 13 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections on using OpenMP with application, tools for OpenMP, extensions of OpenMP, and implementation and performance.
As predicted by Gordon E. Moore in 1965, the performance of computer processors increased at an exponential rate. Nevertheless, the increases in computing speeds of single processor machines were eventually curtailed by physical constraints. This led to the development of parallel computing, and whilst progress has been made in this field, the complexities of parallel algorithm design, the deficiencies of the available software development tools and the complexity of scheduling tasks over thousands and even millions of processing nodes represent a major challenge to the construction and use of more powerful parallel systems. This book presents the proceedings of the biennial International Conference on Parallel Computing (ParCo2015), held in Edinburgh, Scotland, in September 2015. Topics covered include computer architecture and performance, programming models and methods, as well as applications. The book also includes two invited talks and a number of mini-symposia. Exascale computing holds enormous promise in terms of increasing scientific knowledge acquisition and thus contributing to the future well-being and prosperity of mankind. A number of innovative approaches to the development and use of future high-performance and high-throughput systems are to be found in this book, which will be of interest to all those whose work involves the handling and processing of large amounts of data.
Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.
An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng
Although the highly anticipated petascale computers of the near future will perform at an order of magnitude faster than today's quickest supercomputer, the scaling up of algorithms and applications for this class of computers remains a tough challenge. From scalable algorithm design for massive concurrency toperformance analyses and scientific vis
Unmatched: 50 Years of Supercomputing: A Personal Journey Accompanying the Evolution of a Powerful Tool The rapid and extraordinary progress of supercomputing over the past half-century is a powerful demonstration of our relentless drive to understand and shape the world around us. In this book, David Barkai offers a unique and compelling account of this remarkable technological journey, drawing from his own rich experiences working at the forefront of high-performance computing (HPC). This book is a journey delineated as five decade-long ‘epochs’ defined by the systems’ architectural themes: vector processors, multi-processors, microprocessors, clusters, and accelerators and cloud computing. The final part examines key issues of HPC and discusses where it might be headed. A central goal of this book is to show how computing power has been applied, and, more importantly, how it has impacted and benefitted society. To this end, the use of HPC is illustrated in a range of industries and applications, from weather and climate modeling to engineering and life sciences. As such, this book appeals to both students and general readers with an interest in HPC, as well as industry professionals looking to revolutionize their practice.
This book constitutes the refereed proceedings of the 22nd International Conference on Information and Software Technologies, ICIST 2016, held in Druskininkai, Lithuania, in October 2016. The 61 papers presented were carefully reviewed and selected from 158 submissions. The papers are organized in topical sections on information systems; business intelligence for information and software systems; software engineering; information technology applications.
This book constitutes the refereed proceedings of the 7th International Workshop on OpenMP, IWOMP 2011, held in Chicago, IL, USA in June 2011. The 13 revised full papers presented were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections on using OpenMP with application, tools for OpenMP, extensions of OpenMP, and implementation and performance.
This volume contains the post-proceedings of the 9th Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, MEMICS 2014, held in Telč, Czech Republic, in October 2014. The 13 thoroughly revised papers were carefully selected out of 28 submissions and are presented together with 4 invited papers. The topics covered by the papers include: algorithms, logic, and games; high performance computing; computer aided analysis, verification, and testing; hardware design and diagnostics; computer graphics and image processing; and artificial intelligence and natural language processing.
Covering research topics from system software such as programming languages, compilers, runtime systems, operating systems, communication middleware, and large-scale file systems, as well as application development support software and big-data processing software, this book presents cutting-edge software technologies for extreme scale computing. The findings presented here will provide researchers in these fields with important insights for the further development of exascale computing technologies. This book grew out of the post-peta CREST research project funded by the Japan Science and Technology Agency, the goal of which was to establish software technologies for exploring extreme performance computing beyond petascale computing. The respective were contributed by 14 research teams involved in the project. In addition to advanced technologies for large-scale numerical computation, the project addressed the technologies required for big data and graph processing, the complexity of memory hierarchy, and the power problem. Mapping the direction of future high-performance computing was also a central priority.