Download Free Open Problems In Mathematical Systems And Control Theory Book in PDF and EPUB Free Download. You can read online Open Problems In Mathematical Systems And Control Theory and write the review.

This book provides clear presentations of more than sixty important unsolved problems in mathematical systems and control theory. Each of the problems included here is proposed by a leading expert and set forth in an accessible manner. Covering a wide range of areas, the book will be an ideal reference for anyone interested in the latest developments in the field, including specialists in applied mathematics, engineering, and computer science. The book consists of ten parts representing various problem areas, and each chapter sets forth a different problem presented by a researcher in the particular area and in the same way: description of the problem, motivation and history, available results, and bibliography. It aims not only to encourage work on the included problems but also to suggest new ones and generate fresh research. The reader will be able to submit solutions for possible inclusion on an online version of the book to be updated quarterly on the Princeton University Press website, and thus also be able to access solutions, updated information, and partial solutions as they are developed.
System and Control theory is one of the most exciting areas of contemporary engineering mathematics. From the analysis of Watt's steam engine governor - which enabled the Industrial Revolution - to the design of controllers for consumer items, chemical plants and modern aircraft, the area has always drawn from a broad range of tools. It has provided many challenges and possibilities for interaction between engineering and established areas of 'pure' and 'applied' mathematics. This impressive volume collects a discussion of more than fifty open problems which touch upon a variety of subfields, including: chaotic observers, nonlinear local controlability, discrete event and hybrid systems, neural network learning, matrix inequalities, Lyapunov exponents, and many other issues. Proposed and explained by leading researchers, they are offered with the intention of generating further work, as well as inspiration for many other similar problems which may naturally arise from them. With extensive references, this book will be a useful reference source - as well as an excellent addendum to the textbooks in the area.
Geared primarily to an audience consisting of mathematically advanced undergraduate or beginning graduate students, this text may additionally be used by engineering students interested in a rigorous, proof-oriented systems course that goes beyond the classical frequency-domain material and more applied courses. The minimal mathematical background required is a working knowledge of linear algebra and differential equations. The book covers what constitutes the common core of control theory and is unique in its emphasis on foundational aspects. While covering a wide range of topics written in a standard theorem/proof style, it also develops the necessary techniques from scratch. In this second edition, new chapters and sections have been added, dealing with time optimal control of linear systems, variational and numerical approaches to nonlinear control, nonlinear controllability via Lie-algebraic methods, and controllability of recurrent nets and of linear systems with bounded controls.
This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.
Using the behavioural approach to mathematical modelling, this book views a system as a dynamical relation between manifest and latent variables. The emphasis is on dynamical systems that are represented by systems of linear constant coefficients. The first part analyses the structure of the set of trajectories generated by such dynamical systems, and derives the conditions for two systems of differential equations to be equivalent in the sense that they define the same behaviour. In addition the memory structure of the system is analysed through state space models. The second part of the book is devoted to a number of important system properties, notably controllability, observability, and stability. In the third part, control problems are considered, in particular stabilisation and pole placement questions. Suitable for advanced undergraduate or beginning graduate students in mathematics and engineering, this text contains numerous exercises, including simulation problems, and examples, notably of mechanical systems and electrical circuits.
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.
Striking a nice balance between mathematical rigor and engineering-oriented applications, this second edition covers the bedrock parts of classical control theory — the Routh-Hurwitz theorem and applications, Nyquist diagrams, Bode plots, root locus plots, and the design of controllers (phase-lag, phase-lead, lag-lead, and PID). It also covers three more advanced topics — non-linear control, modern control, and discrete-time control.This invaluable book makes effective use of MATLAB® as a tool in design and analysis. Containing 75 solved problems and 200 figures, this edition will be useful for junior and senior level university students in engineering who have a good knowledge of complex variables and linear algebra.
This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.
This book shows clearly how the study of concrete control systems has motivated the development of the mathematical tools needed for solving such problems. In many cases, by using this apparatus, far-reaching generalizations have been made, and its further development will have an important effect on many fields of mathematics. In the book a way is demonstrated in which the study of the Watt flyball governor has given rise to the theory of stability of motion. The criteria of controllability, observability, and stabilization are stated. Analysis is made of dynamical systems, which describe an autopilot, spacecraft orientation system, controllers of a synchronous electric machine, and phase-locked loops. The Aizerman and Brockett problems are discussed and an introduction to the theory of discrete control systems is given. Contents: The Watt Governor and the Mathematical Theory of Stability of Motion; Linear Electric Circuits. Transfer Functions and Frequency Responses of Linear Blocks; Controllability, Observability, Stabilization; Two-Dimensional Control Systems. Phase Portraits; Discrete Systems; The Aizerman Conjecture. The Popov Method. Readership: Applied mathematicians and mechanical engineers.
Give, and it shall be given unto you. ST. LUKE, VI, 38. The book is based on several courses of lectures on control theory and appli cations which were delivered by the authors for a number of years at Moscow Electronics and Mathematics University. The book, originally written in Rus sian, was first published by Vysshaya Shkola (Higher School) Publishing House in Moscow in 1989. In preparing a new edition of the book we planned to make only minor changes in the text. However, we soon realized that we like many scholars working in control theory had learned many new things and had had many new insights into control theory and its applications since the book was first published. Therefore, we rewrote the book especially for the English edition. So, this is substantially a new book with many new topics. The book consists of an introduction and four parts. Part One deals with the fundamentals of modern stability theory: general results concerning stability and instability, sufficient conditions for the stability of linear systems, methods for determining the stability or instability of systems of various type, theorems on stability under random disturbances.